diff options
Diffstat (limited to 'Documentation/RCU')
-rw-r--r-- | Documentation/RCU/checklist.txt | 6 | ||||
-rw-r--r-- | Documentation/RCU/stallwarn.txt | 16 | ||||
-rw-r--r-- | Documentation/RCU/trace.txt | 43 | ||||
-rw-r--r-- | Documentation/RCU/whatisRCU.txt | 9 |
4 files changed, 37 insertions, 37 deletions
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt index fc103d7a047..cdb20d41a44 100644 --- a/Documentation/RCU/checklist.txt +++ b/Documentation/RCU/checklist.txt @@ -310,6 +310,12 @@ over a rather long period of time, but improvements are always welcome! code under the influence of preempt_disable(), you instead need to use synchronize_irq() or synchronize_sched(). + This same limitation also applies to synchronize_rcu_bh() + and synchronize_srcu(), as well as to the asynchronous and + expedited forms of the three primitives, namely call_rcu(), + call_rcu_bh(), call_srcu(), synchronize_rcu_expedited(), + synchronize_rcu_bh_expedited(), and synchronize_srcu_expedited(). + 12. Any lock acquired by an RCU callback must be acquired elsewhere with softirq disabled, e.g., via spin_lock_irqsave(), spin_lock_bh(), etc. Failing to disable irq on a given diff --git a/Documentation/RCU/stallwarn.txt b/Documentation/RCU/stallwarn.txt index 523364e4e1f..1927151b386 100644 --- a/Documentation/RCU/stallwarn.txt +++ b/Documentation/RCU/stallwarn.txt @@ -99,7 +99,7 @@ In kernels with CONFIG_RCU_FAST_NO_HZ, even more information is printed: INFO: rcu_preempt detected stall on CPU - 0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 drain=0 . timer=-1 + 0: (64628 ticks this GP) idle=dd5/3fffffffffffffff/0 drain=0 . timer not pending (t=65000 jiffies) The "(64628 ticks this GP)" indicates that this CPU has taken more @@ -116,13 +116,13 @@ number between the two "/"s is the value of the nesting, which will be a small positive number if in the idle loop and a very large positive number (as shown above) otherwise. -For CONFIG_RCU_FAST_NO_HZ kernels, the "drain=0" indicates that the -CPU is not in the process of trying to force itself into dyntick-idle -state, the "." indicates that the CPU has not given up forcing RCU -into dyntick-idle mode (it would be "H" otherwise), and the "timer=-1" -indicates that the CPU has not recented forced RCU into dyntick-idle -mode (it would otherwise indicate the number of microseconds remaining -in this forced state). +For CONFIG_RCU_FAST_NO_HZ kernels, the "drain=0" indicates that the CPU is +not in the process of trying to force itself into dyntick-idle state, the +"." indicates that the CPU has not given up forcing RCU into dyntick-idle +mode (it would be "H" otherwise), and the "timer not pending" indicates +that the CPU has not recently forced RCU into dyntick-idle mode (it +would otherwise indicate the number of microseconds remaining in this +forced state). Multiple Warnings From One Stall diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt index f6f15ce3990..672d1908325 100644 --- a/Documentation/RCU/trace.txt +++ b/Documentation/RCU/trace.txt @@ -333,23 +333,23 @@ o Each element of the form "1/1 0:127 ^0" represents one struct The output of "cat rcu/rcu_pending" looks as follows: rcu_sched: - 0 np=255892 qsp=53936 rpq=85 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741 - 1 np=261224 qsp=54638 rpq=33 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792 - 2 np=237496 qsp=49664 rpq=23 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629 - 3 np=236249 qsp=48766 rpq=98 cbr=0 cng=286 gpc=48049 gps=1218 nf=207 nn=137723 - 4 np=221310 qsp=46850 rpq=7 cbr=0 cng=26 gpc=43161 gps=4634 nf=3529 nn=123110 - 5 np=237332 qsp=48449 rpq=9 cbr=0 cng=54 gpc=47920 gps=3252 nf=201 nn=137456 - 6 np=219995 qsp=46718 rpq=12 cbr=0 cng=50 gpc=42098 gps=6093 nf=4202 nn=120834 - 7 np=249893 qsp=49390 rpq=42 cbr=0 cng=72 gpc=38400 gps=17102 nf=41 nn=144888 + 0 np=255892 qsp=53936 rpq=85 cbr=0 cng=14417 gpc=10033 gps=24320 nn=146741 + 1 np=261224 qsp=54638 rpq=33 cbr=0 cng=25723 gpc=16310 gps=2849 nn=155792 + 2 np=237496 qsp=49664 rpq=23 cbr=0 cng=2762 gpc=45478 gps=1762 nn=136629 + 3 np=236249 qsp=48766 rpq=98 cbr=0 cng=286 gpc=48049 gps=1218 nn=137723 + 4 np=221310 qsp=46850 rpq=7 cbr=0 cng=26 gpc=43161 gps=4634 nn=123110 + 5 np=237332 qsp=48449 rpq=9 cbr=0 cng=54 gpc=47920 gps=3252 nn=137456 + 6 np=219995 qsp=46718 rpq=12 cbr=0 cng=50 gpc=42098 gps=6093 nn=120834 + 7 np=249893 qsp=49390 rpq=42 cbr=0 cng=72 gpc=38400 gps=17102 nn=144888 rcu_bh: - 0 np=146741 qsp=1419 rpq=6 cbr=0 cng=6 gpc=0 gps=0 nf=2 nn=145314 - 1 np=155792 qsp=12597 rpq=3 cbr=0 cng=0 gpc=4 gps=8 nf=3 nn=143180 - 2 np=136629 qsp=18680 rpq=1 cbr=0 cng=0 gpc=7 gps=6 nf=0 nn=117936 - 3 np=137723 qsp=2843 rpq=0 cbr=0 cng=0 gpc=10 gps=7 nf=0 nn=134863 - 4 np=123110 qsp=12433 rpq=0 cbr=0 cng=0 gpc=4 gps=2 nf=0 nn=110671 - 5 np=137456 qsp=4210 rpq=1 cbr=0 cng=0 gpc=6 gps=5 nf=0 nn=133235 - 6 np=120834 qsp=9902 rpq=2 cbr=0 cng=0 gpc=6 gps=3 nf=2 nn=110921 - 7 np=144888 qsp=26336 rpq=0 cbr=0 cng=0 gpc=8 gps=2 nf=0 nn=118542 + 0 np=146741 qsp=1419 rpq=6 cbr=0 cng=6 gpc=0 gps=0 nn=145314 + 1 np=155792 qsp=12597 rpq=3 cbr=0 cng=0 gpc=4 gps=8 nn=143180 + 2 np=136629 qsp=18680 rpq=1 cbr=0 cng=0 gpc=7 gps=6 nn=117936 + 3 np=137723 qsp=2843 rpq=0 cbr=0 cng=0 gpc=10 gps=7 nn=134863 + 4 np=123110 qsp=12433 rpq=0 cbr=0 cng=0 gpc=4 gps=2 nn=110671 + 5 np=137456 qsp=4210 rpq=1 cbr=0 cng=0 gpc=6 gps=5 nn=133235 + 6 np=120834 qsp=9902 rpq=2 cbr=0 cng=0 gpc=6 gps=3 nn=110921 + 7 np=144888 qsp=26336 rpq=0 cbr=0 cng=0 gpc=8 gps=2 nn=118542 As always, this is once again split into "rcu_sched" and "rcu_bh" portions, with CONFIG_TREE_PREEMPT_RCU kernels having an additional @@ -377,17 +377,6 @@ o "gpc" is the number of times that an old grace period had o "gps" is the number of times that a new grace period had started, but this CPU was not yet aware of it. -o "nf" is the number of times that this CPU suspected that the - current grace period had run for too long, and thus needed to - be forced. - - Please note that "forcing" consists of sending resched IPIs - to holdout CPUs. If that CPU really still is in an old RCU - read-side critical section, then we really do have to wait for it. - The assumption behing "forcing" is that the CPU is not still in - an old RCU read-side critical section, but has not yet responded - for some other reason. - o "nn" is the number of times that this CPU needed nothing. Alert readers will note that the rcu "nn" number for a given CPU very closely matches the rcu_bh "np" number for that same CPU. This diff --git a/Documentation/RCU/whatisRCU.txt b/Documentation/RCU/whatisRCU.txt index 69ee188515e..bf0f6de2aa0 100644 --- a/Documentation/RCU/whatisRCU.txt +++ b/Documentation/RCU/whatisRCU.txt @@ -873,7 +873,7 @@ d. Do you need to treat NMI handlers, hardirq handlers, and code segments with preemption disabled (whether via preempt_disable(), local_irq_save(), local_bh_disable(), or some other mechanism) as if they were explicit RCU readers? - If so, you need RCU-sched. + If so, RCU-sched is the only choice that will work for you. e. Do you need RCU grace periods to complete even in the face of softirq monopolization of one or more of the CPUs? For @@ -884,7 +884,12 @@ f. Is your workload too update-intensive for normal use of RCU, but inappropriate for other synchronization mechanisms? If so, consider SLAB_DESTROY_BY_RCU. But please be careful! -g. Otherwise, use RCU. +g. Do you need read-side critical sections that are respected + even though they are in the middle of the idle loop, during + user-mode execution, or on an offlined CPU? If so, SRCU is the + only choice that will work for you. + +h. Otherwise, use RCU. Of course, this all assumes that you have determined that RCU is in fact the right tool for your job. |