summaryrefslogtreecommitdiff
path: root/lib/rational.c
diff options
context:
space:
mode:
authorOskar Schirmer <os@emlix.com>2009-06-11 14:51:15 +0100
committerLinus Torvalds <torvalds@linux-foundation.org>2009-06-11 08:51:08 -0700
commit8759ef32d992fc6c0bcbe40fca7aa302190918a5 (patch)
tree316df64d3456597bf7f8ef7508654c82faf6a5fe /lib/rational.c
parent9f322ad064f9210e7d472dfe77e702274d5c9dba (diff)
downloadlinux-3.10-8759ef32d992fc6c0bcbe40fca7aa302190918a5.tar.gz
linux-3.10-8759ef32d992fc6c0bcbe40fca7aa302190918a5.tar.bz2
linux-3.10-8759ef32d992fc6c0bcbe40fca7aa302190918a5.zip
lib: isolate rational fractions helper function
Provide a helper function to determine optimum numerator denominator value pairs taking into account restricted register size. Useful especially with PLL and other clock configurations. Signed-off-by: Oskar Schirmer <os@emlix.com> Signed-off-by: Alan Cox <alan@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'lib/rational.c')
-rw-r--r--lib/rational.c62
1 files changed, 62 insertions, 0 deletions
diff --git a/lib/rational.c b/lib/rational.c
new file mode 100644
index 00000000000..b3c099b5478
--- /dev/null
+++ b/lib/rational.c
@@ -0,0 +1,62 @@
+/*
+ * rational fractions
+ *
+ * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com>
+ *
+ * helper functions when coping with rational numbers
+ */
+
+#include <linux/rational.h>
+
+/*
+ * calculate best rational approximation for a given fraction
+ * taking into account restricted register size, e.g. to find
+ * appropriate values for a pll with 5 bit denominator and
+ * 8 bit numerator register fields, trying to set up with a
+ * frequency ratio of 3.1415, one would say:
+ *
+ * rational_best_approximation(31415, 10000,
+ * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
+ *
+ * you may look at given_numerator as a fixed point number,
+ * with the fractional part size described in given_denominator.
+ *
+ * for theoretical background, see:
+ * http://en.wikipedia.org/wiki/Continued_fraction
+ */
+
+void rational_best_approximation(
+ unsigned long given_numerator, unsigned long given_denominator,
+ unsigned long max_numerator, unsigned long max_denominator,
+ unsigned long *best_numerator, unsigned long *best_denominator)
+{
+ unsigned long n, d, n0, d0, n1, d1;
+ n = given_numerator;
+ d = given_denominator;
+ n0 = d1 = 0;
+ n1 = d0 = 1;
+ for (;;) {
+ unsigned long t, a;
+ if ((n1 > max_numerator) || (d1 > max_denominator)) {
+ n1 = n0;
+ d1 = d0;
+ break;
+ }
+ if (d == 0)
+ break;
+ t = d;
+ a = n / d;
+ d = n % d;
+ n = t;
+ t = n0 + a * n1;
+ n0 = n1;
+ n1 = t;
+ t = d0 + a * d1;
+ d0 = d1;
+ d1 = t;
+ }
+ *best_numerator = n1;
+ *best_denominator = d1;
+}
+
+EXPORT_SYMBOL(rational_best_approximation);