diff options
author | Arjan van de Ven <arjan@linux.intel.com> | 2006-09-30 23:27:17 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-10-01 00:39:19 -0700 |
commit | 5c87579e65ee4f419b2369407f82326d38b5d2d8 (patch) | |
tree | 3e015ba93eb6eefb7ed4318daf95be0771d596a8 /include | |
parent | 130c6b98984a058068ea595c465fba2beb48b9ef (diff) | |
download | linux-3.10-5c87579e65ee4f419b2369407f82326d38b5d2d8.tar.gz linux-3.10-5c87579e65ee4f419b2369407f82326d38b5d2d8.tar.bz2 linux-3.10-5c87579e65ee4f419b2369407f82326d38b5d2d8.zip |
[PATCH] maximum latency tracking infrastructure
Add infrastructure to track "maximum allowable latency" for power saving
policies.
The reason for adding this infrastructure is that power management in the
idle loop needs to make a tradeoff between latency and power savings
(deeper power save modes have a longer latency to running code again). The
code that today makes this tradeoff just does a rather simple algorithm;
however this is not good enough: There are devices and use cases where a
lower latency is required than that the higher power saving states provide.
An example would be audio playback, but another example is the ipw2100
wireless driver that right now has a very direct and ugly acpi hook to
disable some higher power states randomly when it gets certain types of
error.
The proposed solution is to have an interface where drivers can
* announce the maximum latency (in microseconds) that they can deal with
* modify this latency
* give up their constraint
and a function where the code that decides on power saving strategy can
query the current global desired maximum.
This patch has a user of each side: on the consumer side, ACPI is patched
to use this, on the producer side the ipw2100 driver is patched.
A generic maximum latency is also registered of 2 timer ticks (more and you
lose accurate time tracking after all).
While the existing users of the patch are x86 specific, the infrastructure
is not. I'd like to ask the arch maintainers of other architectures if the
infrastructure is generic enough for their use (assuming the architecture
has such a tradeoff as concept at all), and the sound/multimedia driver
owners to look at the driver facing API to see if this is something they
can use.
[akpm@osdl.org: cleanups]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jesse Barnes <jesse.barnes@intel.com>
Cc: "Brown, Len" <len.brown@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/latency.h | 25 |
1 files changed, 25 insertions, 0 deletions
diff --git a/include/linux/latency.h b/include/linux/latency.h new file mode 100644 index 00000000000..c08b52bb55b --- /dev/null +++ b/include/linux/latency.h @@ -0,0 +1,25 @@ +/* + * latency.h: Explicit system-wide latency-expectation infrastructure + * + * (C) Copyright 2006 Intel Corporation + * Author: Arjan van de Ven <arjan@linux.intel.com> + * + */ + +#ifndef _INCLUDE_GUARD_LATENCY_H_ +#define _INCLUDE_GUARD_LATENCY_H_ + +#include <linux/notifier.h> + +void set_acceptable_latency(char *identifier, int usecs); +void modify_acceptable_latency(char *identifier, int usecs); +void remove_acceptable_latency(char *identifier); +void synchronize_acceptable_latency(void); +int system_latency_constraint(void); + +int register_latency_notifier(struct notifier_block * nb); +int unregister_latency_notifier(struct notifier_block * nb); + +#define INFINITE_LATENCY 1000000 + +#endif |