diff options
author | Jens Axboe <jens.axboe@oracle.com> | 2010-03-19 08:05:10 +0100 |
---|---|---|
committer | Jens Axboe <jens.axboe@oracle.com> | 2010-03-19 08:05:10 +0100 |
commit | b4b7a4ef097f288f724420b473dbf92a89c0ab7e (patch) | |
tree | 23ad8101e3e77c32a8d1e1b95a9c1cd7f7a475b7 /Documentation/DocBook | |
parent | e9ce335df51ff782035a15c261a3c0c9892a1767 (diff) | |
parent | a3d3203e4bb40f253b1541e310dc0f9305be7c84 (diff) | |
download | linux-3.10-b4b7a4ef097f288f724420b473dbf92a89c0ab7e.tar.gz linux-3.10-b4b7a4ef097f288f724420b473dbf92a89c0ab7e.tar.bz2 linux-3.10-b4b7a4ef097f288f724420b473dbf92a89c0ab7e.zip |
Merge branch 'master' into for-linus
Conflicts:
block/Kconfig
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Diffstat (limited to 'Documentation/DocBook')
-rw-r--r-- | Documentation/DocBook/mtdnand.tmpl | 6 | ||||
-rw-r--r-- | Documentation/DocBook/v4l/common.xml | 2 | ||||
-rw-r--r-- | Documentation/DocBook/v4l/vidioc-g-parm.xml | 2 |
3 files changed, 5 insertions, 5 deletions
diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl index 5e7d84b4850..133cd6c3f3c 100644 --- a/Documentation/DocBook/mtdnand.tmpl +++ b/Documentation/DocBook/mtdnand.tmpl @@ -488,7 +488,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip) The ECC bytes must be placed immidiately after the data bytes in order to make the syndrome generator work. This is contrary to the usual layout used by software ECC. The - seperation of data and out of band area is not longer + separation of data and out of band area is not longer possible. The nand driver code handles this layout and the remaining free bytes in the oob area are managed by the autoplacement code. Provide a matching oob-layout @@ -560,7 +560,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip) bad blocks. They have factory marked good blocks. The marker pattern is erased when the block is erased to be reused. So in case of powerloss before writing the pattern back to the chip this block - would be lost and added to the bad blocks. Therefor we scan the + would be lost and added to the bad blocks. Therefore we scan the chip(s) when we detect them the first time for good blocks and store this information in a bad block table before erasing any of the blocks. @@ -1094,7 +1094,7 @@ in this page</entry> manufacturers specifications. This applies similar to the spare area. </para> <para> - Therefor NAND aware filesystems must either write in page size chunks + Therefore NAND aware filesystems must either write in page size chunks or hold a writebuffer to collect smaller writes until they sum up to pagesize. Available NAND aware filesystems: JFFS2, YAFFS. </para> diff --git a/Documentation/DocBook/v4l/common.xml b/Documentation/DocBook/v4l/common.xml index c65f0ac9b6e..cea23e1c4fc 100644 --- a/Documentation/DocBook/v4l/common.xml +++ b/Documentation/DocBook/v4l/common.xml @@ -1170,7 +1170,7 @@ frames per second. If less than this number of frames is to be captured or output, applications can request frame skipping or duplicating on the driver side. This is especially useful when using the &func-read; or &func-write;, which are not augmented by timestamps -or sequence counters, and to avoid unneccessary data copying.</para> +or sequence counters, and to avoid unnecessary data copying.</para> <para>Finally these ioctls can be used to determine the number of buffers used internally by a driver in read/write mode. For diff --git a/Documentation/DocBook/v4l/vidioc-g-parm.xml b/Documentation/DocBook/v4l/vidioc-g-parm.xml index 78332d365ce..392aa9e5571 100644 --- a/Documentation/DocBook/v4l/vidioc-g-parm.xml +++ b/Documentation/DocBook/v4l/vidioc-g-parm.xml @@ -55,7 +55,7 @@ captured or output, applications can request frame skipping or duplicating on the driver side. This is especially useful when using the <function>read()</function> or <function>write()</function>, which are not augmented by timestamps or sequence counters, and to avoid -unneccessary data copying.</para> +unnecessary data copying.</para> <para>Further these ioctls can be used to determine the number of buffers used internally by a driver in read/write mode. For |