/* * Linux Security plug * * Copyright (C) 2001 WireX Communications, Inc * Copyright (C) 2001 Greg Kroah-Hartman * Copyright (C) 2001 Networks Associates Technology, Inc * Copyright (C) 2001 James Morris * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Due to this file being licensed under the GPL there is controversy over * whether this permits you to write a module that #includes this file * without placing your module under the GPL. Please consult a lawyer for * advice before doing this. * */ #ifndef __LINUX_SECURITY_H #define __LINUX_SECURITY_H #include #include #include #include #include #include #include #include #include /* PAGE_ALIGN */ #include #include #include #include #include #include /* Maximum number of letters for an LSM name string */ #define SECURITY_NAME_MAX 10 /* If capable should audit the security request */ #define SECURITY_CAP_NOAUDIT 0 #define SECURITY_CAP_AUDIT 1 struct ctl_table; struct audit_krule; struct user_namespace; /* * These functions are in security/capability.c and are used * as the default capabilities functions */ extern int cap_capable(struct task_struct *tsk, const struct cred *cred, struct user_namespace *ns, int cap, int audit); extern int cap_settime(const struct timespec *ts, const struct timezone *tz); extern int cap_ptrace_access_check(struct task_struct *child, unsigned int mode); extern int cap_ptrace_traceme(struct task_struct *parent); extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); extern int cap_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted); extern int cap_bprm_set_creds(struct linux_binprm *bprm); extern int cap_bprm_secureexec(struct linux_binprm *bprm); extern int cap_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags); extern int cap_inode_removexattr(struct dentry *dentry, const char *name); extern int cap_inode_need_killpriv(struct dentry *dentry); extern int cap_inode_killpriv(struct dentry *dentry); extern int cap_mmap_addr(unsigned long addr); extern int cap_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags); extern int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags); extern int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); extern int cap_task_setscheduler(struct task_struct *p); extern int cap_task_setioprio(struct task_struct *p, int ioprio); extern int cap_task_setnice(struct task_struct *p, int nice); extern int cap_vm_enough_memory(struct mm_struct *mm, long pages); struct msghdr; struct sk_buff; struct sock; struct sockaddr; struct socket; struct flowi; struct dst_entry; struct xfrm_selector; struct xfrm_policy; struct xfrm_state; struct xfrm_user_sec_ctx; struct seq_file; extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb); extern int cap_netlink_recv(struct sk_buff *skb, int cap); void reset_security_ops(void); #ifdef CONFIG_MMU extern unsigned long mmap_min_addr; extern unsigned long dac_mmap_min_addr; #else #define dac_mmap_min_addr 0UL #endif /* * Values used in the task_security_ops calls */ /* setuid or setgid, id0 == uid or gid */ #define LSM_SETID_ID 1 /* setreuid or setregid, id0 == real, id1 == eff */ #define LSM_SETID_RE 2 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */ #define LSM_SETID_RES 4 /* setfsuid or setfsgid, id0 == fsuid or fsgid */ #define LSM_SETID_FS 8 /* forward declares to avoid warnings */ struct sched_param; struct request_sock; /* bprm->unsafe reasons */ #define LSM_UNSAFE_SHARE 1 #define LSM_UNSAFE_PTRACE 2 #define LSM_UNSAFE_PTRACE_CAP 4 #ifdef CONFIG_MMU /* * If a hint addr is less than mmap_min_addr change hint to be as * low as possible but still greater than mmap_min_addr */ static inline unsigned long round_hint_to_min(unsigned long hint) { hint &= PAGE_MASK; if (((void *)hint != NULL) && (hint < mmap_min_addr)) return PAGE_ALIGN(mmap_min_addr); return hint; } extern int mmap_min_addr_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); #endif #ifdef CONFIG_SECURITY struct security_mnt_opts { char **mnt_opts; int *mnt_opts_flags; int num_mnt_opts; }; static inline void security_init_mnt_opts(struct security_mnt_opts *opts) { opts->mnt_opts = NULL; opts->mnt_opts_flags = NULL; opts->num_mnt_opts = 0; } static inline void security_free_mnt_opts(struct security_mnt_opts *opts) { int i; if (opts->mnt_opts) for (i = 0; i < opts->num_mnt_opts; i++) kfree(opts->mnt_opts[i]); kfree(opts->mnt_opts); opts->mnt_opts = NULL; kfree(opts->mnt_opts_flags); opts->mnt_opts_flags = NULL; opts->num_mnt_opts = 0; } /** * struct security_operations - main security structure * * Security module identifier. * * @name: * A string that acts as a unique identifeir for the LSM with max number * of characters = SECURITY_NAME_MAX. * * Security hooks for program execution operations. * * @bprm_set_creds: * Save security information in the bprm->security field, typically based * on information about the bprm->file, for later use by the apply_creds * hook. This hook may also optionally check permissions (e.g. for * transitions between security domains). * This hook may be called multiple times during a single execve, e.g. for * interpreters. The hook can tell whether it has already been called by * checking to see if @bprm->security is non-NULL. If so, then the hook * may decide either to retain the security information saved earlier or * to replace it. * @bprm contains the linux_binprm structure. * Return 0 if the hook is successful and permission is granted. * @bprm_check_security: * This hook mediates the point when a search for a binary handler will * begin. It allows a check the @bprm->security value which is set in the * preceding set_creds call. The primary difference from set_creds is * that the argv list and envp list are reliably available in @bprm. This * hook may be called multiple times during a single execve; and in each * pass set_creds is called first. * @bprm contains the linux_binprm structure. * Return 0 if the hook is successful and permission is granted. * @bprm_committing_creds: * Prepare to install the new security attributes of a process being * transformed by an execve operation, based on the old credentials * pointed to by @current->cred and the information set in @bprm->cred by * the bprm_set_creds hook. @bprm points to the linux_binprm structure. * This hook is a good place to perform state changes on the process such * as closing open file descriptors to which access will no longer be * granted when the attributes are changed. This is called immediately * before commit_creds(). * @bprm_committed_creds: * Tidy up after the installation of the new security attributes of a * process being transformed by an execve operation. The new credentials * have, by this point, been set to @current->cred. @bprm points to the * linux_binprm structure. This hook is a good place to perform state * changes on the process such as clearing out non-inheritable signal * state. This is called immediately after commit_creds(). * @bprm_secureexec: * Return a boolean value (0 or 1) indicating whether a "secure exec" * is required. The flag is passed in the auxiliary table * on the initial stack to the ELF interpreter to indicate whether libc * should enable secure mode. * @bprm contains the linux_binprm structure. * * Security hooks for filesystem operations. * * @sb_alloc_security: * Allocate and attach a security structure to the sb->s_security field. * The s_security field is initialized to NULL when the structure is * allocated. * @sb contains the super_block structure to be modified. * Return 0 if operation was successful. * @sb_free_security: * Deallocate and clear the sb->s_security field. * @sb contains the super_block structure to be modified. * @sb_statfs: * Check permission before obtaining filesystem statistics for the @mnt * mountpoint. * @dentry is a handle on the superblock for the filesystem. * Return 0 if permission is granted. * @sb_mount: * Check permission before an object specified by @dev_name is mounted on * the mount point named by @nd. For an ordinary mount, @dev_name * identifies a device if the file system type requires a device. For a * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the * pathname of the object being mounted. * @dev_name contains the name for object being mounted. * @path contains the path for mount point object. * @type contains the filesystem type. * @flags contains the mount flags. * @data contains the filesystem-specific data. * Return 0 if permission is granted. * @sb_copy_data: * Allow mount option data to be copied prior to parsing by the filesystem, * so that the security module can extract security-specific mount * options cleanly (a filesystem may modify the data e.g. with strsep()). * This also allows the original mount data to be stripped of security- * specific options to avoid having to make filesystems aware of them. * @type the type of filesystem being mounted. * @orig the original mount data copied from userspace. * @copy copied data which will be passed to the security module. * Returns 0 if the copy was successful. * @sb_remount: * Extracts security system specifc mount options and verifys no changes * are being made to those options. * @sb superblock being remounted * @data contains the filesystem-specific data. * Return 0 if permission is granted. * @sb_umount: * Check permission before the @mnt file system is unmounted. * @mnt contains the mounted file system. * @flags contains the unmount flags, e.g. MNT_FORCE. * Return 0 if permission is granted. * @sb_pivotroot: * Check permission before pivoting the root filesystem. * @old_path contains the path for the new location of the current root (put_old). * @new_path contains the path for the new root (new_root). * Return 0 if permission is granted. * @sb_set_mnt_opts: * Set the security relevant mount options used for a superblock * @sb the superblock to set security mount options for * @opts binary data structure containing all lsm mount data * @sb_clone_mnt_opts: * Copy all security options from a given superblock to another * @oldsb old superblock which contain information to clone * @newsb new superblock which needs filled in * @sb_parse_opts_str: * Parse a string of security data filling in the opts structure * @options string containing all mount options known by the LSM * @opts binary data structure usable by the LSM * * Security hooks for inode operations. * * @inode_alloc_security: * Allocate and attach a security structure to @inode->i_security. The * i_security field is initialized to NULL when the inode structure is * allocated. * @inode contains the inode structure. * Return 0 if operation was successful. * @inode_free_security: * @inode contains the inode structure. * Deallocate the inode security structure and set @inode->i_security to * NULL. * @inode_init_security: * Obtain the security attribute name suffix and value to set on a newly * created inode and set up the incore security field for the new inode. * This hook is called by the fs code as part of the inode creation * transaction and provides for atomic labeling of the inode, unlike * the post_create/mkdir/... hooks called by the VFS. The hook function * is expected to allocate the name and value via kmalloc, with the caller * being responsible for calling kfree after using them. * If the security module does not use security attributes or does * not wish to put a security attribute on this particular inode, * then it should return -EOPNOTSUPP to skip this processing. * @inode contains the inode structure of the newly created inode. * @dir contains the inode structure of the parent directory. * @qstr contains the last path component of the new object * @name will be set to the allocated name suffix (e.g. selinux). * @value will be set to the allocated attribute value. * @len will be set to the length of the value. * Returns 0 if @name and @value have been successfully set, * -EOPNOTSUPP if no security attribute is needed, or * -ENOMEM on memory allocation failure. * @inode_create: * Check permission to create a regular file. * @dir contains inode structure of the parent of the new file. * @dentry contains the dentry structure for the file to be created. * @mode contains the file mode of the file to be created. * Return 0 if permission is granted. * @inode_link: * Check permission before creating a new hard link to a file. * @old_dentry contains the dentry structure for an existing link to the file. * @dir contains the inode structure of the parent directory of the new link. * @new_dentry contains the dentry structure for the new link. * Return 0 if permission is granted. * @path_link: * Check permission before creating a new hard link to a file. * @old_dentry contains the dentry structure for an existing link * to the file. * @new_dir contains the path structure of the parent directory of * the new link. * @new_dentry contains the dentry structure for the new link. * Return 0 if permission is granted. * @inode_unlink: * Check the permission to remove a hard link to a file. * @dir contains the inode structure of parent directory of the file. * @dentry contains the dentry structure for file to be unlinked. * Return 0 if permission is granted. * @path_unlink: * Check the permission to remove a hard link to a file. * @dir contains the path structure of parent directory of the file. * @dentry contains the dentry structure for file to be unlinked. * Return 0 if permission is granted. * @inode_symlink: * Check the permission to create a symbolic link to a file. * @dir contains the inode structure of parent directory of the symbolic link. * @dentry contains the dentry structure of the symbolic link. * @old_name contains the pathname of file. * Return 0 if permission is granted. * @path_symlink: * Check the permission to create a symbolic link to a file. * @dir contains the path structure of parent directory of * the symbolic link. * @dentry contains the dentry structure of the symbolic link. * @old_name contains the pathname of file. * Return 0 if permission is granted. * @inode_mkdir: * Check permissions to create a new directory in the existing directory * associated with inode strcture @dir. * @dir containst the inode structure of parent of the directory to be created. * @dentry contains the dentry structure of new directory. * @mode contains the mode of new directory. * Return 0 if permission is granted. * @path_mkdir: * Check permissions to create a new directory in the existing directory * associated with path strcture @path. * @dir containst the path structure of parent of the directory * to be created. * @dentry contains the dentry structure of new directory. * @mode contains the mode of new directory. * Return 0 if permission is granted. * @inode_rmdir: * Check the permission to remove a directory. * @dir contains the inode structure of parent of the directory to be removed. * @dentry contains the dentry structure of directory to be removed. * Return 0 if permission is granted. * @path_rmdir: * Check the permission to remove a directory. * @dir contains the path structure of parent of the directory to be * removed. * @dentry contains the dentry structure of directory to be removed. * Return 0 if permission is granted. * @inode_mknod: * Check permissions when creating a special file (or a socket or a fifo * file created via the mknod system call). Note that if mknod operation * is being done for a regular file, then the create hook will be called * and not this hook. * @dir contains the inode structure of parent of the new file. * @dentry contains the dentry structure of the new file. * @mode contains the mode of the new file. * @dev contains the device number. * Return 0 if permission is granted. * @path_mknod: * Check permissions when creating a file. Note that this hook is called * even if mknod operation is being done for a regular file. * @dir contains the path structure of parent of the new file. * @dentry contains the dentry structure of the new file. * @mode contains the mode of the new file. * @dev contains the undecoded device number. Use new_decode_dev() to get * the decoded device number. * Return 0 if permission is granted. * @inode_rename: * Check for permission to rename a file or directory. * @old_dir contains the inode structure for parent of the old link. * @old_dentry contains the dentry structure of the old link. * @new_dir contains the inode structure for parent of the new link. * @new_dentry contains the dentry structure of the new link. * Return 0 if permission is granted. * @path_rename: * Check for permission to rename a file or directory. * @old_dir contains the path structure for parent of the old link. * @old_dentry contains the dentry structure of the old link. * @new_dir contains the path structure for parent of the new link. * @new_dentry contains the dentry structure of the new link. * Return 0 if permission is granted. * @path_chmod: * Check for permission to change DAC's permission of a file or directory. * @dentry contains the dentry structure. * @mnt contains the vfsmnt structure. * @mode contains DAC's mode. * Return 0 if permission is granted. * @path_chown: * Check for permission to change owner/group of a file or directory. * @path contains the path structure. * @uid contains new owner's ID. * @gid contains new group's ID. * Return 0 if permission is granted. * @path_chroot: * Check for permission to change root directory. * @path contains the path structure. * Return 0 if permission is granted. * @inode_readlink: * Check the permission to read the symbolic link. * @dentry contains the dentry structure for the file link. * Return 0 if permission is granted. * @inode_follow_link: * Check permission to follow a symbolic link when looking up a pathname. * @dentry contains the dentry structure for the link. * @nd contains the nameidata structure for the parent directory. * Return 0 if permission is granted. * @inode_permission: * Check permission before accessing an inode. This hook is called by the * existing Linux permission function, so a security module can use it to * provide additional checking for existing Linux permission checks. * Notice that this hook is called when a file is opened (as well as many * other operations), whereas the file_security_ops permission hook is * called when the actual read/write operations are performed. * @inode contains the inode structure to check. * @mask contains the permission mask. * Return 0 if permission is granted. * @inode_setattr: * Check permission before setting file attributes. Note that the kernel * call to notify_change is performed from several locations, whenever * file attributes change (such as when a file is truncated, chown/chmod * operations, transferring disk quotas, etc). * @dentry contains the dentry structure for the file. * @attr is the iattr structure containing the new file attributes. * Return 0 if permission is granted. * @path_truncate: * Check permission before truncating a file. * @path contains the path structure for the file. * Return 0 if permission is granted. * @inode_getattr: * Check permission before obtaining file attributes. * @mnt is the vfsmount where the dentry was looked up * @dentry contains the dentry structure for the file. * Return 0 if permission is granted. * @inode_setxattr: * Check permission before setting the extended attributes * @value identified by @name for @dentry. * Return 0 if permission is granted. * @inode_post_setxattr: * Update inode security field after successful setxattr operation. * @value identified by @name for @dentry. * @inode_getxattr: * Check permission before obtaining the extended attributes * identified by @name for @dentry. * Return 0 if permission is granted. * @inode_listxattr: * Check permission before obtaining the list of extended attribute * names for @dentry. * Return 0 if permission is granted. * @inode_removexattr: * Check permission before removing the extended attribute * identified by @name for @dentry. * Return 0 if permission is granted. * @inode_getsecurity: * Retrieve a copy of the extended attribute representation of the * security label associated with @name for @inode via @buffer. Note that * @name is the remainder of the attribute name after the security prefix * has been removed. @alloc is used to specify of the call should return a * value via the buffer or just the value length Return size of buffer on * success. * @inode_setsecurity: * Set the security label associated with @name for @inode from the * extended attribute value @value. @size indicates the size of the * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. * Note that @name is the remainder of the attribute name after the * security. prefix has been removed. * Return 0 on success. * @inode_listsecurity: * Copy the extended attribute names for the security labels * associated with @inode into @buffer. The maximum size of @buffer * is specified by @buffer_size. @buffer may be NULL to request * the size of the buffer required. * Returns number of bytes used/required on success. * @inode_need_killpriv: * Called when an inode has been changed. * @dentry is the dentry being changed. * Return <0 on error to abort the inode change operation. * Return 0 if inode_killpriv does not need to be called. * Return >0 if inode_killpriv does need to be called. * @inode_killpriv: * The setuid bit is being removed. Remove similar security labels. * Called with the dentry->d_inode->i_mutex held. * @dentry is the dentry being changed. * Return 0 on success. If error is returned, then the operation * causing setuid bit removal is failed. * @inode_getsecid: * Get the secid associated with the node. * @inode contains a pointer to the inode. * @secid contains a pointer to the location where result will be saved. * In case of failure, @secid will be set to zero. * * Security hooks for file operations * * @file_permission: * Check file permissions before accessing an open file. This hook is * called by various operations that read or write files. A security * module can use this hook to perform additional checking on these * operations, e.g. to revalidate permissions on use to support privilege * bracketing or policy changes. Notice that this hook is used when the * actual read/write operations are performed, whereas the * inode_security_ops hook is called when a file is opened (as well as * many other operations). * Caveat: Although this hook can be used to revalidate permissions for * various system call operations that read or write files, it does not * address the revalidation of permissions for memory-mapped files. * Security modules must handle this separately if they need such * revalidation. * @file contains the file structure being accessed. * @mask contains the requested permissions. * Return 0 if permission is granted. * @file_alloc_security: * Allocate and attach a security structure to the file->f_security field. * The security field is initialized to NULL when the structure is first * created. * @file contains the file structure to secure. * Return 0 if the hook is successful and permission is granted. * @file_free_security: * Deallocate and free any security structures stored in file->f_security. * @file contains the file structure being modified. * @file_ioctl: * @file contains the file structure. * @cmd contains the operation to perform. * @arg contains the operational arguments. * Check permission for an ioctl operation on @file. Note that @arg can * sometimes represents a user space pointer; in other cases, it may be a * simple integer value. When @arg represents a user space pointer, it * should never be used by the security module. * Return 0 if permission is granted. * @mmap_addr : * Check permissions for a mmap operation at @addr. * @addr contains virtual address that will be used for the operation. * Return 0 if permission is granted. * @mmap_file : * Check permissions for a mmap operation. The @file may be NULL, e.g. * if mapping anonymous memory. * @file contains the file structure for file to map (may be NULL). * @reqprot contains the protection requested by the application. * @prot contains the protection that will be applied by the kernel. * @flags contains the operational flags. * Return 0 if permission is granted. * @file_mprotect: * Check permissions before changing memory access permissions. * @vma contains the memory region to modify. * @reqprot contains the protection requested by the application. * @prot contains the protection that will be applied by the kernel. * Return 0 if permission is granted. * @file_lock: * Check permission before performing file locking operations. * Note: this hook mediates both flock and fcntl style locks. * @file contains the file structure. * @cmd contains the posix-translated lock operation to perform * (e.g. F_RDLCK, F_WRLCK). * Return 0 if permission is granted. * @file_fcntl: * Check permission before allowing the file operation specified by @cmd * from being performed on the file @file. Note that @arg can sometimes * represents a user space pointer; in other cases, it may be a simple * integer value. When @arg represents a user space pointer, it should * never be used by the security module. * @file contains the file structure. * @cmd contains the operation to be performed. * @arg contains the operational arguments. * Return 0 if permission is granted. * @file_set_fowner: * Save owner security information (typically from current->security) in * file->f_security for later use by the send_sigiotask hook. * @file contains the file structure to update. * Return 0 on success. * @file_send_sigiotask: * Check permission for the file owner @fown to send SIGIO or SIGURG to the * process @tsk. Note that this hook is sometimes called from interrupt. * Note that the fown_struct, @fown, is never outside the context of a * struct file, so the file structure (and associated security information) * can always be obtained: * container_of(fown, struct file, f_owner) * @tsk contains the structure of task receiving signal. * @fown contains the file owner information. * @sig is the signal that will be sent. When 0, kernel sends SIGIO. * Return 0 if permission is granted. * @file_receive: * This hook allows security modules to control the ability of a process * to receive an open file descriptor via socket IPC. * @file contains the file structure being received. * Return 0 if permission is granted. * @file_open * Save open-time permission checking state for later use upon * file_permission, and recheck access if anything has changed * since inode_permission. * * Security hooks for task operations. * * @task_create: * Check permission before creating a child process. See the clone(2) * manual page for definitions of the @clone_flags. * @clone_flags contains the flags indicating what should be shared. * Return 0 if permission is granted. * @cred_alloc_blank: * @cred points to the credentials. * @gfp indicates the atomicity of any memory allocations. * Only allocate sufficient memory and attach to @cred such that * cred_transfer() will not get ENOMEM. * @cred_free: * @cred points to the credentials. * Deallocate and clear the cred->security field in a set of credentials. * @cred_prepare: * @new points to the new credentials. * @old points to the original credentials. * @gfp indicates the atomicity of any memory allocations. * Prepare a new set of credentials by copying the data from the old set. * @cred_transfer: * @new points to the new credentials. * @old points to the original credentials. * Transfer data from original creds to new creds * @kernel_act_as: * Set the credentials for a kernel service to act as (subjective context). * @new points to the credentials to be modified. * @secid specifies the security ID to be set * The current task must be the one that nominated @secid. * Return 0 if successful. * @kernel_create_files_as: * Set the file creation context in a set of credentials to be the same as * the objective context of the specified inode. * @new points to the credentials to be modified. * @inode points to the inode to use as a reference. * The current task must be the one that nominated @inode. * Return 0 if successful. * @kernel_module_request: * Ability to trigger the kernel to automatically upcall to userspace for * userspace to load a kernel module with the given name. * @kmod_name name of the module requested by the kernel * Return 0 if successful. * @task_fix_setuid: * Update the module's state after setting one or more of the user * identity attributes of the current process. The @flags parameter * indicates which of the set*uid system calls invoked this hook. If * @new is the set of credentials that will be installed. Modifications * should be made to this rather than to @current->cred. * @old is the set of credentials that are being replaces * @flags contains one of the LSM_SETID_* values. * Return 0 on success. * @task_setpgid: * Check permission before setting the process group identifier of the * process @p to @pgid. * @p contains the task_struct for process being modified. * @pgid contains the new pgid. * Return 0 if permission is granted. * @task_getpgid: * Check permission before getting the process group identifier of the * process @p. * @p contains the task_struct for the process. * Return 0 if permission is granted. * @task_getsid: * Check permission before getting the session identifier of the process * @p. * @p contains the task_struct for the process. * Return 0 if permission is granted. * @task_getsecid: * Retrieve the security identifier of the process @p. * @p contains the task_struct for the process and place is into @secid. * In case of failure, @secid will be set to zero. * * @task_setnice: * Check permission before setting the nice value of @p to @nice. * @p contains the task_struct of process. * @nice contains the new nice value. * Return 0 if permission is granted. * @task_setioprio * Check permission before setting the ioprio value of @p to @ioprio. * @p contains the task_struct of process. * @ioprio contains the new ioprio value * Return 0 if permission is granted. * @task_getioprio * Check permission before getting the ioprio value of @p. * @p contains the task_struct of process. * Return 0 if permission is granted. * @task_setrlimit: * Check permission before setting the resource limits of the current * process for @resource to @new_rlim. The old resource limit values can * be examined by dereferencing (current->signal->rlim + resource). * @resource contains the resource whose limit is being set. * @new_rlim contains the new limits for @resource. * Return 0 if permission is granted. * @task_setscheduler: * Check permission before setting scheduling policy and/or parameters of * process @p based on @policy and @lp. * @p contains the task_struct for process. * @policy contains the scheduling policy. * @lp contains the scheduling parameters. * Return 0 if permission is granted. * @task_getscheduler: * Check permission before obtaining scheduling information for process * @p. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_movememory * Check permission before moving memory owned by process @p. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_kill: * Check permission before sending signal @sig to @p. @info can be NULL, * the constant 1, or a pointer to a siginfo structure. If @info is 1 or * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming * from the kernel and should typically be permitted. * SIGIO signals are handled separately by the send_sigiotask hook in * file_security_ops. * @p contains the task_struct for process. * @info contains the signal information. * @sig contains the signal value. * @secid contains the sid of the process where the signal originated * Return 0 if permission is granted. * @task_wait: * Check permission before allowing a process to reap a child process @p * and collect its status information. * @p contains the task_struct for process. * Return 0 if permission is granted. * @task_prctl: * Check permission before performing a process control operation on the * current process. * @option contains the operation. * @arg2 contains a argument. * @arg3 contains a argument. * @arg4 contains a argument. * @arg5 contains a argument. * Return -ENOSYS if no-one wanted to handle this op, any other value to * cause prctl() to return immediately with that value. * @task_to_inode: * Set the security attributes for an inode based on an associated task's * security attributes, e.g. for /proc/pid inodes. * @p contains the task_struct for the task. * @inode contains the inode structure for the inode. * * Security hooks for Netlink messaging. * * @netlink_send: * Save security information for a netlink message so that permission * checking can be performed when the message is processed. The security * information can be saved using the eff_cap field of the * netlink_skb_parms structure. Also may be used to provide fine * grained control over message transmission. * @sk associated sock of task sending the message., * @skb contains the sk_buff structure for the netlink message. * Return 0 if the information was successfully saved and message * is allowed to be transmitted. * @netlink_recv: * Check permission before processing the received netlink message in * @skb. * @skb contains the sk_buff structure for the netlink message. * @cap indicates the capability required * Return 0 if permission is granted. * * Security hooks for Unix domain networking. * * @unix_stream_connect: * Check permissions before establishing a Unix domain stream connection * between @sock and @other. * @sock contains the sock structure. * @other contains the peer sock structure. * @newsk contains the new sock structure. * Return 0 if permission is granted. * @unix_may_send: * Check permissions before connecting or sending datagrams from @sock to * @other. * @sock contains the socket structure. * @sock contains the peer socket structure. * Return 0 if permission is granted. * * The @unix_stream_connect and @unix_may_send hooks were necessary because * Linux provides an alternative to the conventional file name space for Unix * domain sockets. Whereas binding and connecting to sockets in the file name * space is mediated by the typical file permissions (and caught by the mknod * and permission hooks in inode_security_ops), binding and connecting to * sockets in the abstract name space is completely unmediated. Sufficient * control of Unix domain sockets in the abstract name space isn't possible * using only the socket layer hooks, since we need to know the actual target * socket, which is not looked up until we are inside the af_unix code. * * Security hooks for socket operations. * * @socket_create: * Check permissions prior to creating a new socket. * @family contains the requested protocol family. * @type contains the requested communications type. * @protocol contains the requested protocol. * @kern set to 1 if a kernel socket. * Return 0 if permission is granted. * @socket_post_create: * This hook allows a module to update or allocate a per-socket security * structure. Note that the security field was not added directly to the * socket structure, but rather, the socket security information is stored * in the associated inode. Typically, the inode alloc_security hook will * allocate and and attach security information to * sock->inode->i_security. This hook may be used to update the * sock->inode->i_security field with additional information that wasn't * available when the inode was allocated. * @sock contains the newly created socket structure. * @family contains the requested protocol family. * @type contains the requested communications type. * @protocol contains the requested protocol. * @kern set to 1 if a kernel socket. * @socket_bind: * Check permission before socket protocol layer bind operation is * performed and the socket @sock is bound to the address specified in the * @address parameter. * @sock contains the socket structure. * @address contains the address to bind to. * @addrlen contains the length of address. * Return 0 if permission is granted. * @socket_connect: * Check permission before socket protocol layer connect operation * attempts to connect socket @sock to a remote address, @address. * @sock contains the socket structure. * @address contains the address of remote endpoint. * @addrlen contains the length of address. * Return 0 if permission is granted. * @socket_listen: * Check permission before socket protocol layer listen operation. * @sock contains the socket structure. * @backlog contains the maximum length for the pending connection queue. * Return 0 if permission is granted. * @socket_accept: * Check permission before accepting a new connection. Note that the new * socket, @newsock, has been created and some information copied to it, * but the accept operation has not actually been performed. * @sock contains the listening socket structure. * @newsock contains the newly created server socket for connection. * Return 0 if permission is granted. * @socket_sendmsg: * Check permission before transmitting a message to another socket. * @sock contains the socket structure. * @msg contains the message to be transmitted. * @size contains the size of message. * Return 0 if permission is granted. * @socket_recvmsg: * Check permission before receiving a message from a socket. * @sock contains the socket structure. * @msg contains the message structure. * @size contains the size of message structure. * @flags contains the operational flags. * Return 0 if permission is granted. * @socket_getsockname: * Check permission before the local address (name) of the socket object * @sock is retrieved. * @sock contains the socket structure. * Return 0 if permission is granted. * @socket_getpeername: * Check permission before the remote address (name) of a socket object * @sock is retrieved. * @sock contains the socket structure. * Return 0 if permission is granted. * @socket_getsockopt: * Check permissions before retrieving the options associated with socket * @sock. * @sock contains the socket structure. * @level contains the protocol level to retrieve option from. * @optname contains the name of option to retrieve. * Return 0 if permission is granted. * @socket_setsockopt: * Check permissions before setting the options associated with socket * @sock. * @sock contains the socket structure. * @level contains the protocol level to set options for. * @optname contains the name of the option to set. * Return 0 if permission is granted. * @socket_shutdown: * Checks permission before all or part of a connection on the socket * @sock is shut down. * @sock contains the socket structure. * @how contains the flag indicating how future sends and receives are handled. * Return 0 if permission is granted. * @socket_sock_rcv_skb: * Check permissions on incoming network packets. This hook is distinct * from Netfilter's IP input hooks since it is the first time that the * incoming sk_buff @skb has been associated with a particular socket, @sk. * Must not sleep inside this hook because some callers hold spinlocks. * @sk contains the sock (not socket) associated with the incoming sk_buff. * @skb contains the incoming network data. * @socket_getpeersec_stream: * This hook allows the security module to provide peer socket security * state for unix or connected tcp sockets to userspace via getsockopt * SO_GETPEERSEC. For tcp sockets this can be meaningful if the * socket is associated with an ipsec SA. * @sock is the local socket. * @optval userspace memory where the security state is to be copied. * @optlen userspace int where the module should copy the actual length * of the security state. * @len as input is the maximum length to copy to userspace provided * by the caller. * Return 0 if all is well, otherwise, typical getsockopt return * values. * @socket_getpeersec_dgram: * This hook allows the security module to provide peer socket security * state for udp sockets on a per-packet basis to userspace via * getsockopt SO_GETPEERSEC. The application must first have indicated * the IP_PASSSEC option via getsockopt. It can then retrieve the * security state returned by this hook for a packet via the SCM_SECURITY * ancillary message type. * @skb is the skbuff for the packet being queried * @secdata is a pointer to a buffer in which to copy the security data * @seclen is the maximum length for @secdata * Return 0 on success, error on failure. * @sk_alloc_security: * Allocate and attach a security structure to the sk->sk_security field, * which is used to copy security attributes between local stream sockets. * @sk_free_security: * Deallocate security structure. * @sk_clone_security: * Clone/copy security structure. * @sk_getsecid: * Retrieve the LSM-specific secid for the sock to enable caching of network * authorizations. * @sock_graft: * Sets the socket's isec sid to the sock's sid. * @inet_conn_request: * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. * @inet_csk_clone: * Sets the new child socket's sid to the openreq sid. * @inet_conn_established: * Sets the connection's peersid to the secmark on skb. * @secmark_relabel_packet: * check if the process should be allowed to relabel packets to the given secid * @security_secmark_refcount_inc * tells the LSM to increment the number of secmark labeling rules loaded * @security_secmark_refcount_dec * tells the LSM to decrement the number of secmark labeling rules loaded * @req_classify_flow: * Sets the flow's sid to the openreq sid. * @tun_dev_create: * Check permissions prior to creating a new TUN device. * @tun_dev_post_create: * This hook allows a module to update or allocate a per-socket security * structure. * @sk contains the newly created sock structure. * @tun_dev_attach: * Check permissions prior to attaching to a persistent TUN device. This * hook can also be used by the module to update any security state * associated with the TUN device's sock structure. * @sk contains the existing sock structure. * * Security hooks for XFRM operations. * * @xfrm_policy_alloc_security: * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy * Database used by the XFRM system. * @sec_ctx contains the security context information being provided by * the user-level policy update program (e.g., setkey). * Allocate a security structure to the xp->security field; the security * field is initialized to NULL when the xfrm_policy is allocated. * Return 0 if operation was successful (memory to allocate, legal context) * @xfrm_policy_clone_security: * @old_ctx contains an existing xfrm_sec_ctx. * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. * Allocate a security structure in new_ctxp that contains the * information from the old_ctx structure. * Return 0 if operation was successful (memory to allocate). * @xfrm_policy_free_security: * @ctx contains the xfrm_sec_ctx * Deallocate xp->security. * @xfrm_policy_delete_security: * @ctx contains the xfrm_sec_ctx. * Authorize deletion of xp->security. * @xfrm_state_alloc_security: * @x contains the xfrm_state being added to the Security Association * Database by the XFRM system. * @sec_ctx contains the security context information being provided by * the user-level SA generation program (e.g., setkey or racoon). * @secid contains the secid from which to take the mls portion of the context. * Allocate a security structure to the x->security field; the security * field is initialized to NULL when the xfrm_state is allocated. Set the * context to correspond to either sec_ctx or polsec, with the mls portion * taken from secid in the latter case. * Return 0 if operation was successful (memory to allocate, legal context). * @xfrm_state_free_security: * @x contains the xfrm_state. * Deallocate x->security. * @xfrm_state_delete_security: * @x contains the xfrm_state. * Authorize deletion of x->security. * @xfrm_policy_lookup: * @ctx contains the xfrm_sec_ctx for which the access control is being * checked. * @fl_secid contains the flow security label that is used to authorize * access to the policy xp. * @dir contains the direction of the flow (input or output). * Check permission when a flow selects a xfrm_policy for processing * XFRMs on a packet. The hook is called when selecting either a * per-socket policy or a generic xfrm policy. * Return 0 if permission is granted, -ESRCH otherwise, or -errno * on other errors. * @xfrm_state_pol_flow_match: * @x contains the state to match. * @xp contains the policy to check for a match. * @fl contains the flow to check for a match. * Return 1 if there is a match. * @xfrm_decode_session: * @skb points to skb to decode. * @secid points to the flow key secid to set. * @ckall says if all xfrms used should be checked for same secid. * Return 0 if ckall is zero or all xfrms used have the same secid. * * Security hooks affecting all Key Management operations * * @key_alloc: * Permit allocation of a key and assign security data. Note that key does * not have a serial number assigned at this point. * @key points to the key. * @flags is the allocation flags * Return 0 if permission is granted, -ve error otherwise. * @key_free: * Notification of destruction; free security data. * @key points to the key. * No return value. * @key_permission: * See whether a specific operational right is granted to a process on a * key. * @key_ref refers to the key (key pointer + possession attribute bit). * @cred points to the credentials to provide the context against which to * evaluate the security data on the key. * @perm describes the combination of permissions required of this key. * Return 0 if permission is granted, -ve error otherwise. * @key_getsecurity: * Get a textual representation of the security context attached to a key * for the purposes of honouring KEYCTL_GETSECURITY. This function * allocates the storage for the NUL-terminated string and the caller * should free it. * @key points to the key to be queried. * @_buffer points to a pointer that should be set to point to the * resulting string (if no label or an error occurs). * Return the length of the string (including terminating NUL) or -ve if * an error. * May also return 0 (and a NULL buffer pointer) if there is no label. * * Security hooks affecting all System V IPC operations. * * @ipc_permission: * Check permissions for access to IPC * @ipcp contains the kernel IPC permission structure * @flag contains the desired (requested) permission set * Return 0 if permission is granted. * @ipc_getsecid: * Get the secid associated with the ipc object. * @ipcp contains the kernel IPC permission structure. * @secid contains a pointer to the location where result will be saved. * In case of failure, @secid will be set to zero. * * Security hooks for individual messages held in System V IPC message queues * @msg_msg_alloc_security: * Allocate and attach a security structure to the msg->security field. * The security field is initialized to NULL when the structure is first * created. * @msg contains the message structure to be modified. * Return 0 if operation was successful and permission is granted. * @msg_msg_free_security: * Deallocate the security structure for this message. * @msg contains the message structure to be modified. * * Security hooks for System V IPC Message Queues * * @msg_queue_alloc_security: * Allocate and attach a security structure to the * msq->q_perm.security field. The security field is initialized to * NULL when the structure is first created. * @msq contains the message queue structure to be modified. * Return 0 if operation was successful and permission is granted. * @msg_queue_free_security: * Deallocate security structure for this message queue. * @msq contains the message queue structure to be modified. * @msg_queue_associate: * Check permission when a message queue is requested through the * msgget system call. This hook is only called when returning the * message queue identifier for an existing message queue, not when a * new message queue is created. * @msq contains the message queue to act upon. * @msqflg contains the operation control flags. * Return 0 if permission is granted. * @msg_queue_msgctl: * Check permission when a message control operation specified by @cmd * is to be performed on the message queue @msq. * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. * @msq contains the message queue to act upon. May be NULL. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @msg_queue_msgsnd: * Check permission before a message, @msg, is enqueued on the message * queue, @msq. * @msq contains the message queue to send message to. * @msg contains the message to be enqueued. * @msqflg contains operational flags. * Return 0 if permission is granted. * @msg_queue_msgrcv: * Check permission before a message, @msg, is removed from the message * queue, @msq. The @target task structure contains a pointer to the * process that will be receiving the message (not equal to the current * process when inline receives are being performed). * @msq contains the message queue to retrieve message from. * @msg contains the message destination. * @target contains the task structure for recipient process. * @type contains the type of message requested. * @mode contains the operational flags. * Return 0 if permission is granted. * * Security hooks for System V Shared Memory Segments * * @shm_alloc_security: * Allocate and attach a security structure to the shp->shm_perm.security * field. The security field is initialized to NULL when the structure is * first created. * @shp contains the shared memory structure to be modified. * Return 0 if operation was successful and permission is granted. * @shm_free_security: * Deallocate the security struct for this memory segment. * @shp contains the shared memory structure to be modified. * @shm_associate: * Check permission when a shared memory region is requested through the * shmget system call. This hook is only called when returning the shared * memory region identifier for an existing region, not when a new shared * memory region is created. * @shp contains the shared memory structure to be modified. * @shmflg contains the operation control flags. * Return 0 if permission is granted. * @shm_shmctl: * Check permission when a shared memory control operation specified by * @cmd is to be performed on the shared memory region @shp. * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. * @shp contains shared memory structure to be modified. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @shm_shmat: * Check permissions prior to allowing the shmat system call to attach the * shared memory segment @shp to the data segment of the calling process. * The attaching address is specified by @shmaddr. * @shp contains the shared memory structure to be modified. * @shmaddr contains the address to attach memory region to. * @shmflg contains the operational flags. * Return 0 if permission is granted. * * Security hooks for System V Semaphores * * @sem_alloc_security: * Allocate and attach a security structure to the sma->sem_perm.security * field. The security field is initialized to NULL when the structure is * first created. * @sma contains the semaphore structure * Return 0 if operation was successful and permission is granted. * @sem_free_security: * deallocate security struct for this semaphore * @sma contains the semaphore structure. * @sem_associate: * Check permission when a semaphore is requested through the semget * system call. This hook is only called when returning the semaphore * identifier for an existing semaphore, not when a new one must be * created. * @sma contains the semaphore structure. * @semflg contains the operation control flags. * Return 0 if permission is granted. * @sem_semctl: * Check permission when a semaphore operation specified by @cmd is to be * performed on the semaphore @sma. The @sma may be NULL, e.g. for * IPC_INFO or SEM_INFO. * @sma contains the semaphore structure. May be NULL. * @cmd contains the operation to be performed. * Return 0 if permission is granted. * @sem_semop * Check permissions before performing operations on members of the * semaphore set @sma. If the @alter flag is nonzero, the semaphore set * may be modified. * @sma contains the semaphore structure. * @sops contains the operations to perform. * @nsops contains the number of operations to perform. * @alter contains the flag indicating whether changes are to be made. * Return 0 if permission is granted. * * @ptrace_access_check: * Check permission before allowing the current process to trace the * @child process. * Security modules may also want to perform a process tracing check * during an execve in the set_security or apply_creds hooks of * tracing check during an execve in the bprm_set_creds hook of * binprm_security_ops if the process is being traced and its security * attributes would be changed by the execve. * @child contains the task_struct structure for the target process. * @mode contains the PTRACE_MODE flags indicating the form of access. * Return 0 if permission is granted. * @ptrace_traceme: * Check that the @parent process has sufficient permission to trace the * current process before allowing the current process to present itself * to the @parent process for tracing. * The parent process will still have to undergo the ptrace_access_check * checks before it is allowed to trace this one. * @parent contains the task_struct structure for debugger process. * Return 0 if permission is granted. * @capget: * Get the @effective, @inheritable, and @permitted capability sets for * the @target process. The hook may also perform permission checking to * determine if the current process is allowed to see the capability sets * of the @target process. * @target contains the task_struct structure for target process. * @effective contains the effective capability set. * @inheritable contains the inheritable capability set. * @permitted contains the permitted capability set. * Return 0 if the capability sets were successfully obtained. * @capset: * Set the @effective, @inheritable, and @permitted capability sets for * the current process. * @new contains the new credentials structure for target process. * @old contains the current credentials structure for target process. * @effective contains the effective capability set. * @inheritable contains the inheritable capability set. * @permitted contains the permitted capability set. * Return 0 and update @new if permission is granted. * @capable: * Check whether the @tsk process has the @cap capability in the indicated * credentials. * @tsk contains the task_struct for the process. * @cred contains the credentials to use. * @ns contains the user namespace we want the capability in * @cap contains the capability . * @audit: Whether to write an audit message or not * Return 0 if the capability is granted for @tsk. * @syslog: * Check permission before accessing the kernel message ring or changing * logging to the console. * See the syslog(2) manual page for an explanation of the @type values. * @type contains the type of action. * @from_file indicates the context of action (if it came from /proc). * Return 0 if permission is granted. * @settime: * Check permission to change the system time. * struct timespec and timezone are defined in include/linux/time.h * @ts contains new time * @tz contains new timezone * Return 0 if permission is granted. * @vm_enough_memory: * Check permissions for allocating a new virtual mapping. * @mm contains the mm struct it is being added to. * @pages contains the number of pages. * Return 0 if permission is granted. * * @secid_to_secctx: * Convert secid to security context. If secdata is NULL the length of * the result will be returned in seclen, but no secdata will be returned. * This does mean that the length could change between calls to check the * length and the next call which actually allocates and returns the secdata. * @secid contains the security ID. * @secdata contains the pointer that stores the converted security context. * @seclen pointer which contains the length of the data * @secctx_to_secid: * Convert security context to secid. * @secid contains the pointer to the generated security ID. * @secdata contains the security context. * * @release_secctx: * Release the security context. * @secdata contains the security context. * @seclen contains the length of the security context. * * Security hooks for Audit * * @audit_rule_init: * Allocate and initialize an LSM audit rule structure. * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h * @op contains the operator the rule uses. * @rulestr contains the context where the rule will be applied to. * @lsmrule contains a pointer to receive the result. * Return 0 if @lsmrule has been successfully set, * -EINVAL in case of an invalid rule. * * @audit_rule_known: * Specifies whether given @rule contains any fields related to current LSM. * @rule contains the audit rule of interest. * Return 1 in case of relation found, 0 otherwise. * * @audit_rule_match: * Determine if given @secid matches a rule previously approved * by @audit_rule_known. * @secid contains the security id in question. * @field contains the field which relates to current LSM. * @op contains the operator that will be used for matching. * @rule points to the audit rule that will be checked against. * @actx points to the audit context associated with the check. * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. * * @audit_rule_free: * Deallocate the LSM audit rule structure previously allocated by * audit_rule_init. * @rule contains the allocated rule * * @inode_notifysecctx: * Notify the security module of what the security context of an inode * should be. Initializes the incore security context managed by the * security module for this inode. Example usage: NFS client invokes * this hook to initialize the security context in its incore inode to the * value provided by the server for the file when the server returned the * file's attributes to the client. * * Must be called with inode->i_mutex locked. * * @inode we wish to set the security context of. * @ctx contains the string which we wish to set in the inode. * @ctxlen contains the length of @ctx. * * @inode_setsecctx: * Change the security context of an inode. Updates the * incore security context managed by the security module and invokes the * fs code as needed (via __vfs_setxattr_noperm) to update any backing * xattrs that represent the context. Example usage: NFS server invokes * this hook to change the security context in its incore inode and on the * backing filesystem to a value provided by the client on a SETATTR * operation. * * Must be called with inode->i_mutex locked. * * @dentry contains the inode we wish to set the security context of. * @ctx contains the string which we wish to set in the inode. * @ctxlen contains the length of @ctx. * * @inode_getsecctx: * Returns a string containing all relavent security context information * * @inode we wish to set the security context of. * @ctx is a pointer in which to place the allocated security context. * @ctxlen points to the place to put the length of @ctx. * This is the main security structure. */ struct security_operations { char name[SECURITY_NAME_MAX + 1]; int (*ptrace_access_check) (struct task_struct *child, unsigned int mode); int (*ptrace_traceme) (struct task_struct *parent); int (*capget) (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); int (*capset) (struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted); int (*capable) (struct task_struct *tsk, const struct cred *cred, struct user_namespace *ns, int cap, int audit); int (*quotactl) (int cmds, int type, int id, struct super_block *sb); int (*quota_on) (struct dentry *dentry); int (*syslog) (int type); int (*settime) (const struct timespec *ts, const struct timezone *tz); int (*vm_enough_memory) (struct mm_struct *mm, long pages); int (*bprm_set_creds) (struct linux_binprm *bprm); int (*bprm_check_security) (struct linux_binprm *bprm); int (*bprm_secureexec) (struct linux_binprm *bprm); void (*bprm_committing_creds) (struct linux_binprm *bprm); void (*bprm_committed_creds) (struct linux_binprm *bprm); int (*sb_alloc_security) (struct super_block *sb); void (*sb_free_security) (struct super_block *sb); int (*sb_copy_data) (char *orig, char *copy); int (*sb_remount) (struct super_block *sb, void *data); int (*sb_kern_mount) (struct super_block *sb, int flags, void *data); int (*sb_show_options) (struct seq_file *m, struct super_block *sb); int (*sb_statfs) (struct dentry *dentry); int (*sb_mount) (char *dev_name, struct path *path, char *type, unsigned long flags, void *data); int (*sb_umount) (struct vfsmount *mnt, int flags); int (*sb_pivotroot) (struct path *old_path, struct path *new_path); int (*sb_set_mnt_opts) (struct super_block *sb, struct security_mnt_opts *opts); void (*sb_clone_mnt_opts) (const struct super_block *oldsb, struct super_block *newsb); int (*sb_parse_opts_str) (char *options, struct security_mnt_opts *opts); #ifdef CONFIG_SECURITY_PATH int (*path_unlink) (struct path *dir, struct dentry *dentry); int (*path_mkdir) (struct path *dir, struct dentry *dentry, int mode); int (*path_rmdir) (struct path *dir, struct dentry *dentry); int (*path_mknod) (struct path *dir, struct dentry *dentry, int mode, unsigned int dev); int (*path_truncate) (struct path *path); int (*path_symlink) (struct path *dir, struct dentry *dentry, const char *old_name); int (*path_link) (struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry); int (*path_rename) (struct path *old_dir, struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry); int (*path_chmod) (struct dentry *dentry, struct vfsmount *mnt, mode_t mode); int (*path_chown) (struct path *path, uid_t uid, gid_t gid); int (*path_chroot) (struct path *path); #endif int (*inode_alloc_security) (struct inode *inode); void (*inode_free_security) (struct inode *inode); int (*inode_init_security) (struct inode *inode, struct inode *dir, const struct qstr *qstr, char **name, void **value, size_t *len); int (*inode_create) (struct inode *dir, struct dentry *dentry, int mode); int (*inode_link) (struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry); int (*inode_unlink) (struct inode *dir, struct dentry *dentry); int (*inode_symlink) (struct inode *dir, struct dentry *dentry, const char *old_name); int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode); int (*inode_rmdir) (struct inode *dir, struct dentry *dentry); int (*inode_mknod) (struct inode *dir, struct dentry *dentry, int mode, dev_t dev); int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); int (*inode_readlink) (struct dentry *dentry); int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd); int (*inode_permission) (struct inode *inode, int mask, unsigned flags); int (*inode_setattr) (struct dentry *dentry, struct iattr *attr); int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry); int (*inode_setxattr) (struct dentry *dentry, const char *name, const void *value, size_t size, int flags); void (*inode_post_setxattr) (struct dentry *dentry, const char *name, const void *value, size_t size, int flags); int (*inode_getxattr) (struct dentry *dentry, const char *name); int (*inode_listxattr) (struct dentry *dentry); int (*inode_removexattr) (struct dentry *dentry, const char *name); int (*inode_need_killpriv) (struct dentry *dentry); int (*inode_killpriv) (struct dentry *dentry); int (*inode_getsecurity) (const struct inode *inode, const char *name, void **buffer, bool alloc); int (*inode_setsecurity) (struct inode *inode, const char *name, const void *value, size_t size, int flags); int (*inode_listsecurity) (struct inode *inode, char *buffer, size_t buffer_size); void (*inode_getsecid) (const struct inode *inode, u32 *secid); int (*file_permission) (struct file *file, int mask); int (*file_alloc_security) (struct file *file); void (*file_free_security) (struct file *file); int (*file_ioctl) (struct file *file, unsigned int cmd, unsigned long arg); int (*mmap_addr) (unsigned long addr); int (*mmap_file) (struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags); int (*file_mprotect) (struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot); int (*file_lock) (struct file *file, unsigned int cmd); int (*file_fcntl) (struct file *file, unsigned int cmd, unsigned long arg); int (*file_set_fowner) (struct file *file); int (*file_send_sigiotask) (struct task_struct *tsk, struct fown_struct *fown, int sig); int (*file_receive) (struct file *file); int (*file_open) (struct file *file, const struct cred *cred); int (*task_create) (unsigned long clone_flags); int (*cred_alloc_blank) (struct cred *cred, gfp_t gfp); void (*cred_free) (struct cred *cred); int (*cred_prepare)(struct cred *new, const struct cred *old, gfp_t gfp); void (*cred_transfer)(struct cred *new, const struct cred *old); int (*kernel_act_as)(struct cred *new, u32 secid); int (*kernel_create_files_as)(struct cred *new, struct inode *inode); int (*kernel_module_request)(char *kmod_name); int (*task_fix_setuid) (struct cred *new, const struct cred *old, int flags); int (*task_setpgid) (struct task_struct *p, pid_t pgid); int (*task_getpgid) (struct task_struct *p); int (*task_getsid) (struct task_struct *p); void (*task_getsecid) (struct task_struct *p, u32 *secid); int (*task_setnice) (struct task_struct *p, int nice); int (*task_setioprio) (struct task_struct *p, int ioprio); int (*task_getioprio) (struct task_struct *p); int (*task_setrlimit) (struct task_struct *p, unsigned int resource, struct rlimit *new_rlim); int (*task_setscheduler) (struct task_struct *p); int (*task_getscheduler) (struct task_struct *p); int (*task_movememory) (struct task_struct *p); int (*task_kill) (struct task_struct *p, struct siginfo *info, int sig, u32 secid); int (*task_wait) (struct task_struct *p); int (*task_prctl) (int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); void (*task_to_inode) (struct task_struct *p, struct inode *inode); int (*ipc_permission) (struct kern_ipc_perm *ipcp, short flag); void (*ipc_getsecid) (struct kern_ipc_perm *ipcp, u32 *secid); int (*msg_msg_alloc_security) (struct msg_msg *msg); void (*msg_msg_free_security) (struct msg_msg *msg); int (*msg_queue_alloc_security) (struct msg_queue *msq); void (*msg_queue_free_security) (struct msg_queue *msq); int (*msg_queue_associate) (struct msg_queue *msq, int msqflg); int (*msg_queue_msgctl) (struct msg_queue *msq, int cmd); int (*msg_queue_msgsnd) (struct msg_queue *msq, struct msg_msg *msg, int msqflg); int (*msg_queue_msgrcv) (struct msg_queue *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode); int (*shm_alloc_security) (struct shmid_kernel *shp); void (*shm_free_security) (struct shmid_kernel *shp); int (*shm_associate) (struct shmid_kernel *shp, int shmflg); int (*shm_shmctl) (struct shmid_kernel *shp, int cmd); int (*shm_shmat) (struct shmid_kernel *shp, char __user *shmaddr, int shmflg); int (*sem_alloc_security) (struct sem_array *sma); void (*sem_free_security) (struct sem_array *sma); int (*sem_associate) (struct sem_array *sma, int semflg); int (*sem_semctl) (struct sem_array *sma, int cmd); int (*sem_semop) (struct sem_array *sma, struct sembuf *sops, unsigned nsops, int alter); int (*netlink_send) (struct sock *sk, struct sk_buff *skb); int (*netlink_recv) (struct sk_buff *skb, int cap); void (*d_instantiate) (struct dentry *dentry, struct inode *inode); int (*getprocattr) (struct task_struct *p, char *name, char **value); int (*setprocattr) (struct task_struct *p, char *name, void *value, size_t size); int (*secid_to_secctx) (u32 secid, char **secdata, u32 *seclen); int (*secctx_to_secid) (const char *secdata, u32 seclen, u32 *secid); void (*release_secctx) (char *secdata, u32 seclen); int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen); int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen); int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen); #ifdef CONFIG_SECURITY_NETWORK int (*unix_stream_connect) (struct sock *sock, struct sock *other, struct sock *newsk); int (*unix_may_send) (struct socket *sock, struct socket *other); int (*socket_create) (int family, int type, int protocol, int kern); int (*socket_post_create) (struct socket *sock, int family, int type, int protocol, int kern); int (*socket_bind) (struct socket *sock, struct sockaddr *address, int addrlen); int (*socket_connect) (struct socket *sock, struct sockaddr *address, int addrlen); int (*socket_listen) (struct socket *sock, int backlog); int (*socket_accept) (struct socket *sock, struct socket *newsock); int (*socket_sendmsg) (struct socket *sock, struct msghdr *msg, int size); int (*socket_recvmsg) (struct socket *sock, struct msghdr *msg, int size, int flags); int (*socket_getsockname) (struct socket *sock); int (*socket_getpeername) (struct socket *sock); int (*socket_getsockopt) (struct socket *sock, int level, int optname); int (*socket_setsockopt) (struct socket *sock, int level, int optname); int (*socket_shutdown) (struct socket *sock, int how); int (*socket_sock_rcv_skb) (struct sock *sk, struct sk_buff *skb); int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len); int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid); int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority); void (*sk_free_security) (struct sock *sk); void (*sk_clone_security) (const struct sock *sk, struct sock *newsk); void (*sk_getsecid) (struct sock *sk, u32 *secid); void (*sock_graft) (struct sock *sk, struct socket *parent); int (*inet_conn_request) (struct sock *sk, struct sk_buff *skb, struct request_sock *req); void (*inet_csk_clone) (struct sock *newsk, const struct request_sock *req); void (*inet_conn_established) (struct sock *sk, struct sk_buff *skb); int (*secmark_relabel_packet) (u32 secid); void (*secmark_refcount_inc) (void); void (*secmark_refcount_dec) (void); void (*req_classify_flow) (const struct request_sock *req, struct flowi *fl); int (*tun_dev_create)(void); void (*tun_dev_post_create)(struct sock *sk); int (*tun_dev_attach)(struct sock *sk); #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int (*xfrm_policy_alloc_security) (struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); int (*xfrm_policy_clone_security) (struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctx); void (*xfrm_policy_free_security) (struct xfrm_sec_ctx *ctx); int (*xfrm_policy_delete_security) (struct xfrm_sec_ctx *ctx); int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx, u32 secid); void (*xfrm_state_free_security) (struct xfrm_state *x); int (*xfrm_state_delete_security) (struct xfrm_state *x); int (*xfrm_policy_lookup) (struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); int (*xfrm_state_pol_flow_match) (struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi *fl); int (*xfrm_decode_session) (struct sk_buff *skb, u32 *secid, int ckall); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ /* key management security hooks */ #ifdef CONFIG_KEYS int (*key_alloc) (struct key *key, const struct cred *cred, unsigned long flags); void (*key_free) (struct key *key); int (*key_permission) (key_ref_t key_ref, const struct cred *cred, key_perm_t perm); int (*key_getsecurity)(struct key *key, char **_buffer); #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT int (*audit_rule_init) (u32 field, u32 op, char *rulestr, void **lsmrule); int (*audit_rule_known) (struct audit_krule *krule); int (*audit_rule_match) (u32 secid, u32 field, u32 op, void *lsmrule, struct audit_context *actx); void (*audit_rule_free) (void *lsmrule); #endif /* CONFIG_AUDIT */ }; /* prototypes */ extern int security_init(void); extern int security_module_enable(struct security_operations *ops); extern int register_security(struct security_operations *ops); /* Security operations */ int security_ptrace_access_check(struct task_struct *child, unsigned int mode); int security_ptrace_traceme(struct task_struct *parent); int security_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted); int security_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted); int security_capable(struct user_namespace *ns, const struct cred *cred, int cap); int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, int cap); int security_real_capable_noaudit(struct task_struct *tsk, struct user_namespace *ns, int cap); int security_quotactl(int cmds, int type, int id, struct super_block *sb); int security_quota_on(struct dentry *dentry); int security_syslog(int type); int security_settime(const struct timespec *ts, const struct timezone *tz); int security_vm_enough_memory(long pages); int security_vm_enough_memory_mm(struct mm_struct *mm, long pages); int security_vm_enough_memory_kern(long pages); int security_bprm_set_creds(struct linux_binprm *bprm); int security_bprm_check(struct linux_binprm *bprm); void security_bprm_committing_creds(struct linux_binprm *bprm); void security_bprm_committed_creds(struct linux_binprm *bprm); int security_bprm_secureexec(struct linux_binprm *bprm); int security_sb_alloc(struct super_block *sb); void security_sb_free(struct super_block *sb); int security_sb_copy_data(char *orig, char *copy); int security_sb_remount(struct super_block *sb, void *data); int security_sb_kern_mount(struct super_block *sb, int flags, void *data); int security_sb_show_options(struct seq_file *m, struct super_block *sb); int security_sb_statfs(struct dentry *dentry); int security_sb_mount(char *dev_name, struct path *path, char *type, unsigned long flags, void *data); int security_sb_umount(struct vfsmount *mnt, int flags); int security_sb_pivotroot(struct path *old_path, struct path *new_path); int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts); void security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb); int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts); int security_inode_alloc(struct inode *inode); void security_inode_free(struct inode *inode); int security_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, char **name, void **value, size_t *len); int security_inode_create(struct inode *dir, struct dentry *dentry, int mode); int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry); int security_inode_unlink(struct inode *dir, struct dentry *dentry); int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name); int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode); int security_inode_rmdir(struct inode *dir, struct dentry *dentry); int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev); int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); int security_inode_readlink(struct dentry *dentry); int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd); int security_inode_permission(struct inode *inode, int mask); int security_inode_exec_permission(struct inode *inode, unsigned int flags); int security_inode_setattr(struct dentry *dentry, struct iattr *attr); int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry); int security_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags); void security_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags); int security_inode_getxattr(struct dentry *dentry, const char *name); int security_inode_listxattr(struct dentry *dentry); int security_inode_removexattr(struct dentry *dentry, const char *name); int security_inode_need_killpriv(struct dentry *dentry); int security_inode_killpriv(struct dentry *dentry); int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc); int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags); int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size); void security_inode_getsecid(const struct inode *inode, u32 *secid); int security_file_permission(struct file *file, int mask); int security_file_alloc(struct file *file); void security_file_free(struct file *file); int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int security_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags); int security_mmap_addr(unsigned long addr); int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot); int security_file_lock(struct file *file, unsigned int cmd); int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg); int security_file_set_fowner(struct file *file); int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig); int security_file_receive(struct file *file); int security_file_open(struct file *file, const struct cred *cred); int security_task_create(unsigned long clone_flags); int security_cred_alloc_blank(struct cred *cred, gfp_t gfp); void security_cred_free(struct cred *cred); int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp); void security_transfer_creds(struct cred *new, const struct cred *old); int security_kernel_act_as(struct cred *new, u32 secid); int security_kernel_create_files_as(struct cred *new, struct inode *inode); int security_kernel_module_request(char *kmod_name); int security_task_fix_setuid(struct cred *new, const struct cred *old, int flags); int security_task_setpgid(struct task_struct *p, pid_t pgid); int security_task_getpgid(struct task_struct *p); int security_task_getsid(struct task_struct *p); void security_task_getsecid(struct task_struct *p, u32 *secid); int security_task_setnice(struct task_struct *p, int nice); int security_task_setioprio(struct task_struct *p, int ioprio); int security_task_getioprio(struct task_struct *p); int security_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim); int security_task_setscheduler(struct task_struct *p); int security_task_getscheduler(struct task_struct *p); int security_task_movememory(struct task_struct *p); int security_task_kill(struct task_struct *p, struct siginfo *info, int sig, u32 secid); int security_task_wait(struct task_struct *p); int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); void security_task_to_inode(struct task_struct *p, struct inode *inode); int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag); void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid); int security_msg_msg_alloc(struct msg_msg *msg); void security_msg_msg_free(struct msg_msg *msg); int security_msg_queue_alloc(struct msg_queue *msq); void security_msg_queue_free(struct msg_queue *msq); int security_msg_queue_associate(struct msg_queue *msq, int msqflg); int security_msg_queue_msgctl(struct msg_queue *msq, int cmd); int security_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg); int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode); int security_shm_alloc(struct shmid_kernel *shp); void security_shm_free(struct shmid_kernel *shp); int security_shm_associate(struct shmid_kernel *shp, int shmflg); int security_shm_shmctl(struct shmid_kernel *shp, int cmd); int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg); int security_sem_alloc(struct sem_array *sma); void security_sem_free(struct sem_array *sma); int security_sem_associate(struct sem_array *sma, int semflg); int security_sem_semctl(struct sem_array *sma, int cmd); int security_sem_semop(struct sem_array *sma, struct sembuf *sops, unsigned nsops, int alter); void security_d_instantiate(struct dentry *dentry, struct inode *inode); int security_getprocattr(struct task_struct *p, char *name, char **value); int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size); int security_netlink_send(struct sock *sk, struct sk_buff *skb); int security_netlink_recv(struct sk_buff *skb, int cap); int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen); int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid); void security_release_secctx(char *secdata, u32 seclen); int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen); int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen); int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen); #else /* CONFIG_SECURITY */ struct security_mnt_opts { }; static inline void security_init_mnt_opts(struct security_mnt_opts *opts) { } static inline void security_free_mnt_opts(struct security_mnt_opts *opts) { } /* * This is the default capabilities functionality. Most of these functions * are just stubbed out, but a few must call the proper capable code. */ static inline int security_init(void) { return 0; } static inline int security_ptrace_access_check(struct task_struct *child, unsigned int mode) { return cap_ptrace_access_check(child, mode); } static inline int security_ptrace_traceme(struct task_struct *parent) { return cap_ptrace_traceme(parent); } static inline int security_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return cap_capget(target, effective, inheritable, permitted); } static inline int security_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return cap_capset(new, old, effective, inheritable, permitted); } static inline int security_capable(struct user_namespace *ns, const struct cred *cred, int cap) { return cap_capable(current, cred, ns, cap, SECURITY_CAP_AUDIT); } static inline int security_real_capable(struct task_struct *tsk, struct user_namespace *ns, int cap) { int ret; rcu_read_lock(); ret = cap_capable(tsk, __task_cred(tsk), ns, cap, SECURITY_CAP_AUDIT); rcu_read_unlock(); return ret; } static inline int security_real_capable_noaudit(struct task_struct *tsk, struct user_namespace *ns, int cap) { int ret; rcu_read_lock(); ret = cap_capable(tsk, __task_cred(tsk), ns, cap, SECURITY_CAP_NOAUDIT); rcu_read_unlock(); return ret; } static inline int security_quotactl(int cmds, int type, int id, struct super_block *sb) { return 0; } static inline int security_quota_on(struct dentry *dentry) { return 0; } static inline int security_syslog(int type) { return 0; } static inline int security_settime(const struct timespec *ts, const struct timezone *tz) { return cap_settime(ts, tz); } static inline int security_vm_enough_memory(long pages) { WARN_ON(current->mm == NULL); return cap_vm_enough_memory(current->mm, pages); } static inline int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) { WARN_ON(mm == NULL); return cap_vm_enough_memory(mm, pages); } static inline int security_vm_enough_memory_kern(long pages) { /* If current->mm is a kernel thread then we will pass NULL, for this specific case that is fine */ return cap_vm_enough_memory(current->mm, pages); } static inline int security_bprm_set_creds(struct linux_binprm *bprm) { return cap_bprm_set_creds(bprm); } static inline int security_bprm_check(struct linux_binprm *bprm) { return 0; } static inline void security_bprm_committing_creds(struct linux_binprm *bprm) { } static inline void security_bprm_committed_creds(struct linux_binprm *bprm) { } static inline int security_bprm_secureexec(struct linux_binprm *bprm) { return cap_bprm_secureexec(bprm); } static inline int security_sb_alloc(struct super_block *sb) { return 0; } static inline void security_sb_free(struct super_block *sb) { } static inline int security_sb_copy_data(char *orig, char *copy) { return 0; } static inline int security_sb_remount(struct super_block *sb, void *data) { return 0; } static inline int security_sb_kern_mount(struct super_block *sb, int flags, void *data) { return 0; } static inline int security_sb_show_options(struct seq_file *m, struct super_block *sb) { return 0; } static inline int security_sb_statfs(struct dentry *dentry) { return 0; } static inline int security_sb_mount(char *dev_name, struct path *path, char *type, unsigned long flags, void *data) { return 0; } static inline int security_sb_umount(struct vfsmount *mnt, int flags) { return 0; } static inline int security_sb_pivotroot(struct path *old_path, struct path *new_path) { return 0; } static inline int security_sb_set_mnt_opts(struct super_block *sb, struct security_mnt_opts *opts) { return 0; } static inline void security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb) { } static inline int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) { return 0; } static inline int security_inode_alloc(struct inode *inode) { return 0; } static inline void security_inode_free(struct inode *inode) { } static inline int security_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, char **name, void **value, size_t *len) { return -EOPNOTSUPP; } static inline int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) { return 0; } static inline int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { return 0; } static inline int security_inode_unlink(struct inode *dir, struct dentry *dentry) { return 0; } static inline int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name) { return 0; } static inline int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) { return 0; } static inline int security_inode_rmdir(struct inode *dir, struct dentry *dentry) { return 0; } static inline int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { return 0; } static inline int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { return 0; } static inline int security_inode_readlink(struct dentry *dentry) { return 0; } static inline int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) { return 0; } static inline int security_inode_permission(struct inode *inode, int mask) { return 0; } static inline int security_inode_exec_permission(struct inode *inode, unsigned int flags) { return 0; } static inline int security_inode_setattr(struct dentry *dentry, struct iattr *attr) { return 0; } static inline int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) { return 0; } static inline int security_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { return cap_inode_setxattr(dentry, name, value, size, flags); } static inline void security_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { } static inline int security_inode_getxattr(struct dentry *dentry, const char *name) { return 0; } static inline int security_inode_listxattr(struct dentry *dentry) { return 0; } static inline int security_inode_removexattr(struct dentry *dentry, const char *name) { return cap_inode_removexattr(dentry, name); } static inline int security_inode_need_killpriv(struct dentry *dentry) { return cap_inode_need_killpriv(dentry); } static inline int security_inode_killpriv(struct dentry *dentry) { return cap_inode_killpriv(dentry); } static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) { return -EOPNOTSUPP; } static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { return -EOPNOTSUPP; } static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { return 0; } static inline void security_inode_getsecid(const struct inode *inode, u32 *secid) { *secid = 0; } static inline int security_file_permission(struct file *file, int mask) { return 0; } static inline int security_file_alloc(struct file *file) { return 0; } static inline void security_file_free(struct file *file) { } static inline int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return 0; } static inline int security_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return 0; } static inline int security_mmap_addr(unsigned long addr) { return cap_mmap_addr(addr); } static inline int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return 0; } static inline int security_file_lock(struct file *file, unsigned int cmd) { return 0; } static inline int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { return 0; } static inline int security_file_set_fowner(struct file *file) { return 0; } static inline int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig) { return 0; } static inline int security_file_receive(struct file *file) { return 0; } static inline int security_file_open(struct file *file, const struct cred *cred) { return 0; } static inline int security_task_create(unsigned long clone_flags) { return 0; } static inline int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) { return 0; } static inline void security_cred_free(struct cred *cred) { } static inline int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) { return 0; } static inline void security_transfer_creds(struct cred *new, const struct cred *old) { } static inline int security_kernel_act_as(struct cred *cred, u32 secid) { return 0; } static inline int security_kernel_create_files_as(struct cred *cred, struct inode *inode) { return 0; } static inline int security_kernel_module_request(char *kmod_name) { return 0; } static inline int security_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { return cap_task_fix_setuid(new, old, flags); } static inline int security_task_setpgid(struct task_struct *p, pid_t pgid) { return 0; } static inline int security_task_getpgid(struct task_struct *p) { return 0; } static inline int security_task_getsid(struct task_struct *p) { return 0; } static inline void security_task_getsecid(struct task_struct *p, u32 *secid) { *secid = 0; } static inline int security_task_setnice(struct task_struct *p, int nice) { return cap_task_setnice(p, nice); } static inline int security_task_setioprio(struct task_struct *p, int ioprio) { return cap_task_setioprio(p, ioprio); } static inline int security_task_getioprio(struct task_struct *p) { return 0; } static inline int security_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { return 0; } static inline int security_task_setscheduler(struct task_struct *p) { return cap_task_setscheduler(p); } static inline int security_task_getscheduler(struct task_struct *p) { return 0; } static inline int security_task_movememory(struct task_struct *p) { return 0; } static inline int security_task_kill(struct task_struct *p, struct siginfo *info, int sig, u32 secid) { return 0; } static inline int security_task_wait(struct task_struct *p) { return 0; } static inline int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { return cap_task_prctl(option, arg2, arg3, arg3, arg5); } static inline void security_task_to_inode(struct task_struct *p, struct inode *inode) { } static inline int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { return 0; } static inline void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { *secid = 0; } static inline int security_msg_msg_alloc(struct msg_msg *msg) { return 0; } static inline void security_msg_msg_free(struct msg_msg *msg) { } static inline int security_msg_queue_alloc(struct msg_queue *msq) { return 0; } static inline void security_msg_queue_free(struct msg_queue *msq) { } static inline int security_msg_queue_associate(struct msg_queue *msq, int msqflg) { return 0; } static inline int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) { return 0; } static inline int security_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) { return 0; } static inline int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { return 0; } static inline int security_shm_alloc(struct shmid_kernel *shp) { return 0; } static inline void security_shm_free(struct shmid_kernel *shp) { } static inline int security_shm_associate(struct shmid_kernel *shp, int shmflg) { return 0; } static inline int security_shm_shmctl(struct shmid_kernel *shp, int cmd) { return 0; } static inline int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) { return 0; } static inline int security_sem_alloc(struct sem_array *sma) { return 0; } static inline void security_sem_free(struct sem_array *sma) { } static inline int security_sem_associate(struct sem_array *sma, int semflg) { return 0; } static inline int security_sem_semctl(struct sem_array *sma, int cmd) { return 0; } static inline int security_sem_semop(struct sem_array *sma, struct sembuf *sops, unsigned nsops, int alter) { return 0; } static inline void security_d_instantiate(struct dentry *dentry, struct inode *inode) { } static inline int security_getprocattr(struct task_struct *p, char *name, char **value) { return -EINVAL; } static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) { return -EINVAL; } static inline int security_netlink_send(struct sock *sk, struct sk_buff *skb) { return cap_netlink_send(sk, skb); } static inline int security_netlink_recv(struct sk_buff *skb, int cap) { return cap_netlink_recv(skb, cap); } static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return -EOPNOTSUPP; } static inline int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { return -EOPNOTSUPP; } static inline void security_release_secctx(char *secdata, u32 seclen) { } static inline int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { return -EOPNOTSUPP; } static inline int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return -EOPNOTSUPP; } static inline int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { return -EOPNOTSUPP; } #endif /* CONFIG_SECURITY */ #ifdef CONFIG_SECURITY_NETWORK int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk); int security_unix_may_send(struct socket *sock, struct socket *other); int security_socket_create(int family, int type, int protocol, int kern); int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern); int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen); int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen); int security_socket_listen(struct socket *sock, int backlog); int security_socket_accept(struct socket *sock, struct socket *newsock); int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size); int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags); int security_socket_getsockname(struct socket *sock); int security_socket_getpeername(struct socket *sock); int security_socket_getsockopt(struct socket *sock, int level, int optname); int security_socket_setsockopt(struct socket *sock, int level, int optname); int security_socket_shutdown(struct socket *sock, int how); int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb); int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len); int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid); int security_sk_alloc(struct sock *sk, int family, gfp_t priority); void security_sk_free(struct sock *sk); void security_sk_clone(const struct sock *sk, struct sock *newsk); void security_sk_classify_flow(struct sock *sk, struct flowi *fl); void security_req_classify_flow(const struct request_sock *req, struct flowi *fl); void security_sock_graft(struct sock*sk, struct socket *parent); int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req); void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req); void security_inet_conn_established(struct sock *sk, struct sk_buff *skb); int security_secmark_relabel_packet(u32 secid); void security_secmark_refcount_inc(void); void security_secmark_refcount_dec(void); int security_tun_dev_create(void); void security_tun_dev_post_create(struct sock *sk); int security_tun_dev_attach(struct sock *sk); #else /* CONFIG_SECURITY_NETWORK */ static inline int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { return 0; } static inline int security_unix_may_send(struct socket *sock, struct socket *other) { return 0; } static inline int security_socket_create(int family, int type, int protocol, int kern) { return 0; } static inline int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { return 0; } static inline int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { return 0; } static inline int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { return 0; } static inline int security_socket_listen(struct socket *sock, int backlog) { return 0; } static inline int security_socket_accept(struct socket *sock, struct socket *newsock) { return 0; } static inline int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return 0; } static inline int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return 0; } static inline int security_socket_getsockname(struct socket *sock) { return 0; } static inline int security_socket_getpeername(struct socket *sock) { return 0; } static inline int security_socket_getsockopt(struct socket *sock, int level, int optname) { return 0; } static inline int security_socket_setsockopt(struct socket *sock, int level, int optname) { return 0; } static inline int security_socket_shutdown(struct socket *sock, int how) { return 0; } static inline int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { return 0; } static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned len) { return -ENOPROTOOPT; } static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return -ENOPROTOOPT; } static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return 0; } static inline void security_sk_free(struct sock *sk) { } static inline void security_sk_clone(const struct sock *sk, struct sock *newsk) { } static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl) { } static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) { } static inline void security_sock_graft(struct sock *sk, struct socket *parent) { } static inline int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return 0; } static inline void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { } static inline void security_inet_conn_established(struct sock *sk, struct sk_buff *skb) { } static inline int security_secmark_relabel_packet(u32 secid) { return 0; } static inline void security_secmark_refcount_inc(void) { } static inline void security_secmark_refcount_dec(void) { } static inline int security_tun_dev_create(void) { return 0; } static inline void security_tun_dev_post_create(struct sock *sk) { } static inline int security_tun_dev_attach(struct sock *sk) { return 0; } #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx); int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp); void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx); int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx); int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx); int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid); int security_xfrm_state_delete(struct xfrm_state *x); void security_xfrm_state_free(struct xfrm_state *x); int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir); int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi *fl); int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid); void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl); #else /* CONFIG_SECURITY_NETWORK_XFRM */ static inline int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) { return 0; } static inline int security_xfrm_policy_clone(struct xfrm_sec_ctx *old, struct xfrm_sec_ctx **new_ctxp) { return 0; } static inline void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) { } static inline int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) { return 0; } static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return 0; } static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { return 0; } static inline void security_xfrm_state_free(struct xfrm_state *x) { } static inline int security_xfrm_state_delete(struct xfrm_state *x) { return 0; } static inline int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) { return 0; } static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi *fl) { return 1; } static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return 0; } static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) { } #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_SECURITY_PATH int security_path_unlink(struct path *dir, struct dentry *dentry); int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode); int security_path_rmdir(struct path *dir, struct dentry *dentry); int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, unsigned int dev); int security_path_truncate(struct path *path); int security_path_symlink(struct path *dir, struct dentry *dentry, const char *old_name); int security_path_link(struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry); int security_path_rename(struct path *old_dir, struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry); int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, mode_t mode); int security_path_chown(struct path *path, uid_t uid, gid_t gid); int security_path_chroot(struct path *path); #else /* CONFIG_SECURITY_PATH */ static inline int security_path_unlink(struct path *dir, struct dentry *dentry) { return 0; } static inline int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) { return 0; } static inline int security_path_rmdir(struct path *dir, struct dentry *dentry) { return 0; } static inline int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, unsigned int dev) { return 0; } static inline int security_path_truncate(struct path *path) { return 0; } static inline int security_path_symlink(struct path *dir, struct dentry *dentry, const char *old_name) { return 0; } static inline int security_path_link(struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry) { return 0; } static inline int security_path_rename(struct path *old_dir, struct dentry *old_dentry, struct path *new_dir, struct dentry *new_dentry) { return 0; } static inline int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, mode_t mode) { return 0; } static inline int security_path_chown(struct path *path, uid_t uid, gid_t gid) { return 0; } static inline int security_path_chroot(struct path *path) { return 0; } #endif /* CONFIG_SECURITY_PATH */ #ifdef CONFIG_KEYS #ifdef CONFIG_SECURITY int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags); void security_key_free(struct key *key); int security_key_permission(key_ref_t key_ref, const struct cred *cred, key_perm_t perm); int security_key_getsecurity(struct key *key, char **_buffer); #else static inline int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags) { return 0; } static inline void security_key_free(struct key *key) { } static inline int security_key_permission(key_ref_t key_ref, const struct cred *cred, key_perm_t perm) { return 0; } static inline int security_key_getsecurity(struct key *key, char **_buffer) { *_buffer = NULL; return 0; } #endif #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT #ifdef CONFIG_SECURITY int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule); int security_audit_rule_known(struct audit_krule *krule); int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, struct audit_context *actx); void security_audit_rule_free(void *lsmrule); #else static inline int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) { return 0; } static inline int security_audit_rule_known(struct audit_krule *krule) { return 0; } static inline int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, struct audit_context *actx) { return 0; } static inline void security_audit_rule_free(void *lsmrule) { } #endif /* CONFIG_SECURITY */ #endif /* CONFIG_AUDIT */ #ifdef CONFIG_SECURITYFS extern struct dentry *securityfs_create_file(const char *name, mode_t mode, struct dentry *parent, void *data, const struct file_operations *fops); extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent); extern void securityfs_remove(struct dentry *dentry); #else /* CONFIG_SECURITYFS */ static inline struct dentry *securityfs_create_dir(const char *name, struct dentry *parent) { return ERR_PTR(-ENODEV); } static inline struct dentry *securityfs_create_file(const char *name, mode_t mode, struct dentry *parent, void *data, const struct file_operations *fops) { return ERR_PTR(-ENODEV); } static inline void securityfs_remove(struct dentry *dentry) {} #endif #ifdef CONFIG_SECURITY static inline char *alloc_secdata(void) { return (char *)get_zeroed_page(GFP_KERNEL); } static inline void free_secdata(void *secdata) { free_page((unsigned long)secdata); } #else static inline char *alloc_secdata(void) { return (char *)1; } static inline void free_secdata(void *secdata) { } #endif /* CONFIG_SECURITY */ #endif /* ! __LINUX_SECURITY_H */