summaryrefslogtreecommitdiff
path: root/lib/libutils/isoc/arch/arm/softfloat/source/include/primitives.h
blob: 9995556a2069c538a7d361e6cc93454b30d34bb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

/*============================================================================

This C header file is part of the SoftFloat IEEE Floating-Point Arithmetic
Package, Release 3a, by John R. Hauser.

Copyright 2011, 2012, 2013, 2014 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
    this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions, and the following disclaimer in the documentation
    and/or other materials provided with the distribution.

 3. Neither the name of the University nor the names of its contributors may
    be used to endorse or promote products derived from this software without
    specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

=============================================================================*/

#ifndef primitives_h
#define primitives_h 1

#include <stdbool.h>
#include <stdint.h>
#include "primitiveTypes.h"

#ifndef softfloat_shortShiftRightJam64
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count', which must be in
| the range 1 to 63.  If any nonzero bits are shifted off, they are "jammed"
| into the least-significant bit of the shifted value by setting the least-
| significant bit to 1.  This shifted-and-jammed value is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t count )
    { return a>>count | ((a & (((uint_fast64_t) 1<<count) - 1)) != 0); }
#else
uint64_t softfloat_shortShiftRightJam64( uint64_t a, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shiftRightJam32
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count', which must not
| be zero.  If any nonzero bits are shifted off, they are "jammed" into the
| least-significant bit of the shifted value by setting the least-significant
| bit to 1.  This shifted-and-jammed value is returned.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than 32, the result will be either 0 or 1, depending on whether
| `a' is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t count )
{
    return
        (count < 31) ? a>>count | ((uint32_t) (a<<(-count & 31)) != 0)
            : (a != 0);
}
#else
uint32_t softfloat_shiftRightJam32( uint32_t a, uint_fast16_t count );
#endif
#endif

#ifndef softfloat_shiftRightJam64
/*----------------------------------------------------------------------------
| Shifts `a' right by the number of bits given in `count', which must not
| be zero.  If any nonzero bits are shifted off, they are "jammed" into the
| least-significant bit of the shifted value by setting the least-significant
| bit to 1.  This shifted-and-jammed value is returned.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than 64, the result will be either 0 or 1, depending on whether
| `a' is zero or nonzero.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t count )
{
    return
        (count < 63) ? a>>count | ((uint64_t) (a<<(-count & 63)) != 0)
            : (a != 0);
}
#else
uint64_t softfloat_shiftRightJam64( uint64_t a, uint_fast32_t count );
#endif
#endif

/*----------------------------------------------------------------------------
| A constant table that translates an 8-bit unsigned integer (the array index)
| into the number of leading 0 bits before the most-significant 1 of that
| integer.  For integer zero (index 0), the corresponding table element is 8.
*----------------------------------------------------------------------------*/
extern const uint_least8_t softfloat_countLeadingZeros8[256];

#ifndef softfloat_countLeadingZeros32
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 32 is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE uint_fast8_t softfloat_countLeadingZeros32( uint32_t a )
{
    uint_fast8_t count = 0;
    if ( a < 0x10000 ) {
        count = 16;
        a <<= 16;
    }
    if ( a < 0x1000000 ) {
        count += 8;
        a <<= 8;
    }
    count += softfloat_countLeadingZeros8[a>>24];
    return count;
}
#else
uint_fast8_t softfloat_countLeadingZeros32( uint32_t a );
#endif
#endif

#ifndef softfloat_countLeadingZeros64
/*----------------------------------------------------------------------------
| Returns the number of leading 0 bits before the most-significant 1 bit of
| `a'.  If `a' is zero, 64 is returned.
*----------------------------------------------------------------------------*/
uint_fast8_t softfloat_countLeadingZeros64( uint64_t a );
#endif

#ifndef softfloat_approxRecip32_1
/*----------------------------------------------------------------------------
| Returns an approximation to the reciprocal of the number represented by `a',
| where `a' is interpreted as an unsigned fixed-point number with one integer
| bit and 31 fraction bits.  The `a' input must be "normalized", meaning that
| its most-significant bit (bit 31) must be 1.  Thus, if A is the value of
| the fixed-point interpretation of `a', then 1 <= A < 2.  The returned value
| is interpreted as a pure unsigned fraction, having no integer bits and 32
| fraction bits.  The approximation returned is never greater than the true
| reciprocal 1/A, and it differs from the true reciprocal by at most 2.006 ulp
| (units in the last place).
*----------------------------------------------------------------------------*/
#ifdef SOFTFLOAT_FAST_DIV64TO32
#define softfloat_approxRecip32_1( a ) ((uint32_t) (UINT64_C( 0x7FFFFFFFFFFFFFFF ) / (uint32_t) (a)))
#else
uint32_t softfloat_approxRecip32_1( uint32_t a );
#endif
#endif

#ifndef softfloat_approxRecipSqrt32_1
/*----------------------------------------------------------------------------
| Returns an approximation to the reciprocal of the square root of the number
| represented by `a', where `a' is interpreted as an unsigned fixed-point
| number either with one integer bit and 31 fraction bits or with two integer
| bits and 30 fraction bits.  The format of `a' is determined by `oddExpA',
| which must be either 0 or 1.  If `oddExpA' is 1, `a' is interpreted as
| having one integer bit, and if `oddExpA' is 0, `a' is interpreted as having
| two integer bits.  The `a' input must be "normalized", meaning that its
| most-significant bit (bit 31) must be 1.  Thus, if A is the value of the
| fixed-point interpretation of `a', it follows that 1 <= A < 2 when `oddExpA'
| is 1, and 2 <= A < 4 when `oddExpA' is 0.
|   The returned value is interpreted as a pure unsigned fraction, having
| no integer bits and 32 fraction bits.  The approximation returned is never
| greater than the true reciprocal 1/sqrt(A), and it differs from the true
| reciprocal by at most 2.06 ulp (units in the last place).  The approximation
| returned is also always within the range 0.5 to 1; thus, the most-
| significant bit of the result is always set.
*----------------------------------------------------------------------------*/
uint32_t softfloat_approxRecipSqrt32_1( unsigned int oddExpA, uint32_t a );
#endif

#ifdef SOFTFLOAT_FAST_INT64

/*----------------------------------------------------------------------------
| The following functions are needed only when `SOFTFLOAT_FAST_INT64' is
| defined.
*----------------------------------------------------------------------------*/

#ifndef softfloat_eq128
/*----------------------------------------------------------------------------
| Returns true if the 128-bit unsigned integer formed by concatenating `a64'
| and `a0' is equal to the 128-bit unsigned integer formed by concatenating
| `b64' and `b0'.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (1 <= INLINE_LEVEL)
INLINE
 bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
    { return (a64 == b64) && (a0 == b0); }
#else
bool softfloat_eq128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif

#ifndef softfloat_le128
/*----------------------------------------------------------------------------
| Returns true if the 128-bit unsigned integer formed by concatenating `a64'
| and `a0' is less than or equal to the 128-bit unsigned integer formed by
| concatenating `b64' and `b0'.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
    { return (a64 < b64) || ((a64 == b64) && (a0 <= b0)); }
#else
bool softfloat_le128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif

#ifndef softfloat_lt128
/*----------------------------------------------------------------------------
| Returns true if the 128-bit unsigned integer formed by concatenating `a64'
| and `a0' is less than the 128-bit unsigned integer formed by concatenating
| `b64' and `b0'.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
    { return (a64 < b64) || ((a64 == b64) && (a0 < b0)); }
#else
bool softfloat_lt128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif

#ifndef softfloat_shortShiftLeft128
/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating `a64' and `a0' left by the
| number of bits given in `count', which must be in the range 1 to 63.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 struct uint128
  softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t count )
{
    struct uint128 z;
    z.v64 = a64<<count | a0>>(-count & 63);
    z.v0 = a0<<count;
    return z;
}
#else
struct uint128
 softfloat_shortShiftLeft128( uint64_t a64, uint64_t a0, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shortShiftRight128
/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating `a64' and `a0' right by the
| number of bits given in `count', which must be in the range 1 to 63.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 struct uint128
  softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t count )
{
    struct uint128 z;
    z.v64 = a64>>count;
    z.v0 = a64<<(-count & 63) | a0>>count;
    return z;
}
#else
struct uint128
 softfloat_shortShiftRight128( uint64_t a64, uint64_t a0, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shortShiftRightJam64Extra
/*----------------------------------------------------------------------------
| This function is the same as `softfloat_shiftRightJam64Extra' (below),
| except that `count' must be in the range 1 to 63.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 struct uint64_extra
  softfloat_shortShiftRightJam64Extra(
      uint64_t a, uint64_t extra, uint_fast8_t count )
{
    struct uint64_extra z;
    z.v = a>>count;
    z.extra = a<<(-count & 63) | (extra != 0);
    return z;
}
#else
struct uint64_extra
 softfloat_shortShiftRightJam64Extra(
     uint64_t a, uint64_t extra, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shortShiftRightJam128
/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating `a64' and `a0' right by the
| number of bits given in `count', which must be in the range 1 to 63.  If any
| nonzero bits are shifted off, they are "jammed" into the least-significant
| bit of the shifted value by setting the least-significant bit to 1.  This
| shifted-and-jammed value is returned.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
 struct uint128
  softfloat_shortShiftRightJam128(
      uint64_t a64, uint64_t a0, uint_fast8_t count )
{
    uint_fast8_t negCount = -count;
    struct uint128 z;
    z.v64 = a64>>count;
    z.v0 =
        a64<<(negCount & 63) | a0>>count
            | ((uint64_t) (a0<<(negCount & 63)) != 0);
    return z;
}
#else
struct uint128
 softfloat_shortShiftRightJam128(
     uint64_t a64, uint64_t a0, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shortShiftRightJam128Extra
/*----------------------------------------------------------------------------
| This function is the same as `softfloat_shiftRightJam128Extra' (below),
| except that `count' must be in the range 1 to 63.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE
 struct uint128_extra
  softfloat_shortShiftRightJam128Extra(
      uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t count )
{
    uint_fast8_t negCount = -count;
    struct uint128_extra z;
    z.v.v64 = a64>>count;
    z.v.v0 = a64<<(negCount & 63) | a0>>count;
    z.extra = a0<<(negCount & 63) | (extra != 0);
    return z;
}
#else
struct uint128_extra
 softfloat_shortShiftRightJam128Extra(
     uint64_t a64, uint64_t a0, uint64_t extra, uint_fast8_t count );
#endif
#endif

#ifndef softfloat_shiftRightJam64Extra
/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating `a' and `extra' right by 64
| _plus_ the number of bits given in `count', which must not be zero.  This
| shifted value is at most 64 nonzero bits and is returned in the `v' field
| of the `struct uint64_extra' result.  The 64-bit `extra' field of the result
| contains a value formed as follows from the bits that were shifted off:  The
| _last_ bit shifted off is the most-significant bit of the `extra' field, and
| the other 63 bits of the `extra' field are all zero if and only if _all_but_
| _the_last_ bits shifted off were all zero.
|   (This function makes more sense if `a' and `extra' are considered to form
| an unsigned fixed-point number with binary point between `a' and `extra'.
| This fixed-point value is shifted right by the number of bits given in
| `count', and the integer part of this shifted value is returned in the `v'
| field of the result.  The fractional part of the shifted value is modified
| as described above and returned in the `extra' field of the result.)
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
 struct uint64_extra
  softfloat_shiftRightJam64Extra(
      uint64_t a, uint64_t extra, uint_fast32_t count )
{
    struct uint64_extra z;
    if ( count < 64 ) {
        z.v = a>>count;
        z.extra = a<<(-count & 63);
    } else {
        z.v = 0;
        z.extra = (count == 64) ? a : (a != 0);
    }
    z.extra |= (extra != 0);
    return z;
}
#else
struct uint64_extra
 softfloat_shiftRightJam64Extra(
     uint64_t a, uint64_t extra, uint_fast32_t count );
#endif
#endif

#ifndef softfloat_shiftRightJam128
/*----------------------------------------------------------------------------
| Shifts the 128 bits formed by concatenating `a64' and `a0' right by the
| number of bits given in `count', which must not be zero.  If any nonzero
| bits are shifted off, they are "jammed" into the least-significant bit of
| the shifted value by setting the least-significant bit to 1.  This shifted-
| and-jammed value is returned.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than 128, the result will be either 0 or 1, depending on whether
| the original 128 bits are all zeros.
*----------------------------------------------------------------------------*/
struct uint128
 softfloat_shiftRightJam128( uint64_t a64, uint64_t a0, uint_fast32_t count );
#endif

#ifndef softfloat_shiftRightJam128Extra
/*----------------------------------------------------------------------------
| Shifts the 192 bits formed by concatenating `a64', `a0', and `extra' right
| by 64 _plus_ the number of bits given in `count', which must not be zero.
| This shifted value is at most 128 nonzero bits and is returned in the `v'
| field of the `struct uint128_extra' result.  The 64-bit `extra' field of the
| result contains a value formed as follows from the bits that were shifted
| off:  The _last_ bit shifted off is the most-significant bit of the `extra'
| field, and the other 63 bits of the `extra' field are all zero if and only
| if _all_but_the_last_ bits shifted off were all zero.
|   (This function makes more sense if `a64', `a0', and `extra' are considered
| to form an unsigned fixed-point number with binary point between `a0' and
| `extra'.  This fixed-point value is shifted right by the number of bits
| given in `count', and the integer part of this shifted value is returned
| in the `v' field of the result.  The fractional part of the shifted value
| is modified as described above and returned in the `extra' field of the
| result.)
*----------------------------------------------------------------------------*/
struct uint128_extra
 softfloat_shiftRightJam128Extra(
     uint64_t a64, uint64_t a0, uint64_t extra, uint_fast32_t count );
#endif

#ifndef softfloat_shiftRightJam256M
/*----------------------------------------------------------------------------
| Shifts the 256-bit unsigned integer pointed to by `aPtr' right by the number
| of bits given in `count', which must not be zero.  If any nonzero bits are
| shifted off, they are "jammed" into the least-significant bit of the shifted
| value by setting the least-significant bit to 1.  This shifted-and-jammed
| value is stored at the location pointed to by `zPtr'.  Each of `aPtr' and
| `zPtr' points to an array of four 64-bit elements that concatenate in the
| platform's normal endian order to form a 256-bit integer.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than 256, the stored result will be either 0 or 1, depending on
| whether the original 256 bits are all zeros.
*----------------------------------------------------------------------------*/
void
 softfloat_shiftRightJam256M(
     const uint64_t *aPtr, uint_fast32_t count, uint64_t *zPtr );
#endif

#ifndef softfloat_add128
/*----------------------------------------------------------------------------
| Returns the sum of the 128-bit integer formed by concatenating `a64' and
| `a0' and the 128-bit integer formed by concatenating `b64' and `b0'.  The
| addition is modulo 2^128, so any carry out is lost.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 struct uint128
  softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
    struct uint128 z;
    z.v0 = a0 + b0;
    z.v64 = a64 + b64 + (z.v0 < a0);
    return z;
}
#else
struct uint128
 softfloat_add128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif

#ifndef softfloat_add256M
/*----------------------------------------------------------------------------
| Adds the two 256-bit integers pointed to by `aPtr' and `bPtr'.  The addition
| is modulo 2^256, so any carry out is lost.  The sum is stored at the
| location pointed to by `zPtr'.  Each of `aPtr', `bPtr', and `zPtr' points to
| an array of four 64-bit elements that concatenate in the platform's normal
| endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_add256M(
     const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
#endif

#ifndef softfloat_sub128
/*----------------------------------------------------------------------------
| Returns the difference of the 128-bit integer formed by concatenating `a64'
| and `a0' and the 128-bit integer formed by concatenating `b64' and `b0'.
| The subtraction is modulo 2^128, so any borrow out (carry out) is lost.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 struct uint128
  softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 )
{
    struct uint128 z;
    z.v0 = a0 - b0;
    z.v64 = a64 - b64;
    z.v64 -= (a0 < b0);
    return z;
}
#else
struct uint128
 softfloat_sub128( uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0 );
#endif
#endif

#ifndef softfloat_sub256M
/*----------------------------------------------------------------------------
| Subtracts the 256-bit integer pointed to by `bPtr' from the 256-bit integer
| pointed to by `aPtr'.  The addition is modulo 2^256, so any borrow out
| (carry out) is lost.  The difference is stored at the location pointed to
| by `zPtr'.  Each of `aPtr', `bPtr', and `zPtr' points to an array of four
| 64-bit elements that concatenate in the platform's normal endian order to
| form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_sub256M(
     const uint64_t *aPtr, const uint64_t *bPtr, uint64_t *zPtr );
#endif

#ifndef softfloat_mul64ByShifted32To128
/*----------------------------------------------------------------------------
| Returns the 128-bit product of `a', `b', and 2^32.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (3 <= INLINE_LEVEL)
INLINE struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b )
{
    uint_fast64_t mid;
    struct uint128 z;
    mid = (uint_fast64_t) (uint32_t) a * b;
    z.v0 = mid<<32;
    z.v64 = (uint_fast64_t) (uint32_t) (a>>32) * b + (mid>>32);
    return z;
}
#else
struct uint128 softfloat_mul64ByShifted32To128( uint64_t a, uint32_t b );
#endif
#endif

#ifndef softfloat_mul64To128
/*----------------------------------------------------------------------------
| Returns the 128-bit product of `a' and `b'.
*----------------------------------------------------------------------------*/
struct uint128 softfloat_mul64To128( uint64_t a, uint64_t b );
#endif

#ifndef softfloat_mul128By32
/*----------------------------------------------------------------------------
| Returns the product of the 128-bit integer formed by concatenating `a64' and
| `a0', multiplied by `b'.  The multiplication is modulo 2^128; any overflow
| bits are discarded.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (4 <= INLINE_LEVEL)
INLINE
 struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b )
{
    struct uint128 z;
    uint_fast64_t mid;
    uint_fast32_t carry;
    z.v0 = a0 * b;
    mid = (uint_fast64_t) (uint32_t) (a0>>32) * b;
    carry = (uint32_t) ((uint_fast32_t) (z.v0>>32) - (uint_fast32_t) mid);
    z.v64 = a64 * b + (uint_fast32_t) ((mid + carry)>>32);
    return z;
}
#else
struct uint128 softfloat_mul128By32( uint64_t a64, uint64_t a0, uint32_t b );
#endif
#endif

#ifndef softfloat_mul128To256M
/*----------------------------------------------------------------------------
| Multiplies the 128-bit unsigned integer formed by concatenating `a64' and
| `a0' by the 128-bit unsigned integer formed by concatenating `b64' and
| `b0'.  The 256-bit product is stored at the location pointed to by `zPtr'.
| Argument `zPtr' points to an array of four 64-bit elements that concatenate
| in the platform's normal endian order to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_mul128To256M(
     uint64_t a64, uint64_t a0, uint64_t b64, uint64_t b0, uint64_t *zPtr );
#endif

#else

/*----------------------------------------------------------------------------
| The following functions are needed only when `SOFTFLOAT_FAST_INT64' is not
| defined.
*----------------------------------------------------------------------------*/

#ifndef softfloat_compare96M
/*----------------------------------------------------------------------------
| Compares the two 96-bit unsigned integers pointed to by `aPtr' and `bPtr'.
| Returns -1 if the first integer (A) is less than the second (B); returns 0
| if the two integers are equal; and returns +1 if the first integer (A)
| is greater than the second (B).  (The result is thus the signum of A - B.)
| Each of `aPtr' and `bPtr' points to an array of three 32-bit elements that
| concatenate in the platform's normal endian order to form a 96-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t softfloat_compare96M( const uint32_t *aPtr, const uint32_t *bPtr );
#endif

#ifndef softfloat_compare128M
/*----------------------------------------------------------------------------
| Compares the two 128-bit unsigned integers pointed to by `aPtr' and `bPtr'.
| Returns -1 if the first integer (A) is less than the second (B); returns 0
| if the two integers are equal; and returns +1 if the first integer (A)
| is greater than the second (B).  (The result is thus the signum of A - B.)
| Each of `aPtr' and `bPtr' points to an array of four 32-bit elements that
| concatenate in the platform's normal endian order to form a 128-bit integer.
*----------------------------------------------------------------------------*/
int_fast8_t
 softfloat_compare128M( const uint32_t *aPtr, const uint32_t *bPtr );
#endif

#ifndef softfloat_shortShiftLeft64To96M
/*----------------------------------------------------------------------------
| Extends `a' to 96 bits and shifts the value left by the number of bits given
| in `count', which must be in the range 1 to 31.  The result is stored at the
| location pointed to by `zPtr'.  Argument `zPtr' points to an array of three
| 32-bit elements that concatenate in the platform's normal endian order to
| form a 96-bit integer.
*----------------------------------------------------------------------------*/
#if defined INLINE_LEVEL && (2 <= INLINE_LEVEL)
INLINE
 void
  softfloat_shortShiftLeft64To96M(
      uint64_t a, uint_fast8_t count, uint32_t *zPtr )
{
    zPtr[indexWord( 3, 0 )] = (uint32_t) a<<count;
    a >>= 32 - count;
    zPtr[indexWord( 3, 2 )] = a>>32;
    zPtr[indexWord( 3, 1 )] = a;
}
#else
void
 softfloat_shortShiftLeft64To96M(
     uint64_t a, uint_fast8_t count, uint32_t *zPtr );
#endif
#endif

#ifndef softfloat_shortShiftLeftM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' left by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must be in the range 1 to 31.  Any nonzero bits shifted off are lost.  The
| shifted N-bit result is stored at the location pointed to by `zPtr'.  Each
| of `aPtr' and `zPtr' points to a `size_words'-long array of 32-bit elements
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
 softfloat_shortShiftLeftM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     uint_fast8_t count,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_shortShiftLeft96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftLeftM' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft96M( aPtr, count, zPtr ) softfloat_shortShiftLeftM( 3, aPtr, count, zPtr )
#endif

#ifndef softfloat_shortShiftLeft128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftLeftM' with
| `size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft128M( aPtr, count, zPtr ) softfloat_shortShiftLeftM( 4, aPtr, count, zPtr )
#endif

#ifndef softfloat_shortShiftLeft160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftLeftM' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftLeft160M( aPtr, count, zPtr ) softfloat_shortShiftLeftM( 5, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftLeftM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' left by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must not be zero.  Any nonzero bits shifted off are lost.  The shifted
| N-bit result is stored at the location pointed to by `zPtr'.  Each of `aPtr'
| and `zPtr' points to a `size_words'-long array of 32-bit elements that
| concatenate in the platform's normal endian order to form an N-bit integer.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
 softfloat_shiftLeftM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     uint32_t count,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_shiftLeft96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftLeftM' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft96M( aPtr, count, zPtr ) softfloat_shiftLeftM( 3, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftLeft128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftLeftM' with
| `size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft128M( aPtr, count, zPtr ) softfloat_shiftLeftM( 4, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftLeft160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftLeftM' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftLeft160M( aPtr, count, zPtr ) softfloat_shiftLeftM( 5, aPtr, count, zPtr )
#endif

#ifndef softfloat_shortShiftRightM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' right by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must be in the range 1 to 31.  Any nonzero bits shifted off are lost.  The
| shifted N-bit result is stored at the location pointed to by `zPtr'.  Each
| of `aPtr' and `zPtr' points to a `size_words'-long array of 32-bit elements
| that concatenate in the platform's normal endian order to form an N-bit
| integer.
*----------------------------------------------------------------------------*/
void
 softfloat_shortShiftRightM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     uint_fast8_t count,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_shortShiftRight128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftRightM' with
| `size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight128M( aPtr, count, zPtr ) softfloat_shortShiftRightM( 4, aPtr, count, zPtr )
#endif

#ifndef softfloat_shortShiftRight160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftRightM' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRight160M( aPtr, count, zPtr ) softfloat_shortShiftRightM( 5, aPtr, count, zPtr )
#endif

#ifndef softfloat_shortShiftRightJamM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' right by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must be in the range 1 to 31.  If any nonzero bits are shifted off, they are
| "jammed" into the least-significant bit of the shifted value by setting the
| least-significant bit to 1.  This shifted-and-jammed N-bit result is stored
| at the location pointed to by `zPtr'.  Each of `aPtr' and `zPtr' points
| to a `size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_shortShiftRightJamM(
     uint_fast8_t, const uint32_t *, uint_fast8_t, uint32_t * );
#endif

#ifndef softfloat_shortShiftRightJam160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shortShiftRightJamM' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shortShiftRightJam160M( aPtr, count, zPtr ) softfloat_shortShiftRightJamM( 5, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftRightM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' right by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must not be zero.  Any nonzero bits shifted off are lost.  The shifted
| N-bit result is stored at the location pointed to by `zPtr'.  Each of `aPtr'
| and `zPtr' points to a `size_words'-long array of 32-bit elements that
| concatenate in the platform's normal endian order to form an N-bit integer.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than N, the stored result will be 0.
*----------------------------------------------------------------------------*/
void
 softfloat_shiftRightM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     uint32_t count,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_shiftRight96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftRightM' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRight96M( aPtr, count, zPtr ) softfloat_shiftRightM( 3, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftRightJamM
/*----------------------------------------------------------------------------
| Shifts the N-bit unsigned integer pointed to by `aPtr' right by the number
| of bits given in `count', where N = `size_words' * 32.  The value of `count'
| must not be zero.  If any nonzero bits are shifted off, they are "jammed"
| into the least-significant bit of the shifted value by setting the least-
| significant bit to 1.  This shifted-and-jammed N-bit result is stored
| at the location pointed to by `zPtr'.  Each of `aPtr' and `zPtr' points
| to a `size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
|   The value of `count' can be arbitrarily large.  In particular, if `count'
| is greater than N, the stored result will be either 0 or 1, depending on
| whether the original N bits are all zeros.
*----------------------------------------------------------------------------*/
void
 softfloat_shiftRightJamM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     uint32_t count,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_shiftRightJam96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftRightJamM' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam96M( aPtr, count, zPtr ) softfloat_shiftRightJamM( 3, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftRightJam128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftRightJamM' with
| `size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam128M( aPtr, count, zPtr ) softfloat_shiftRightJamM( 4, aPtr, count, zPtr )
#endif

#ifndef softfloat_shiftRightJam160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_shiftRightJamM' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_shiftRightJam160M( aPtr, count, zPtr ) softfloat_shiftRightJamM( 5, aPtr, count, zPtr )
#endif

#ifndef softfloat_addM
/*----------------------------------------------------------------------------
| Adds the two N-bit integers pointed to by `aPtr' and `bPtr', where N =
| `size_words' * 32.  The addition is modulo 2^N, so any carry out is lost.
| The N-bit sum is stored at the location pointed to by `zPtr'.  Each of
| `aPtr', `bPtr', and `zPtr' points to a `size_words'-long array of 32-bit
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_addM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     const uint32_t *bPtr,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_add96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_addM' with `size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_add96M( aPtr, bPtr, zPtr ) softfloat_addM( 3, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_add128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_addM' with `size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_add128M( aPtr, bPtr, zPtr ) softfloat_addM( 4, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_add160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_addM' with `size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_add160M( aPtr, bPtr, zPtr ) softfloat_addM( 5, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_addCarryM
/*----------------------------------------------------------------------------
| Adds the two N-bit unsigned integers pointed to by `aPtr' and `bPtr', where
| N = `size_words' * 32, plus `carry', which must be either 0 or 1.  The N-bit
| sum (modulo 2^N) is stored at the location pointed to by `zPtr', and any
| carry out is returned as the result.  Each of `aPtr', `bPtr', and `zPtr'
| points to a `size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
uint_fast8_t
 softfloat_addCarryM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     const uint32_t *bPtr,
     uint_fast8_t carry,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_addComplCarryM
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_addCarryM', except that
| the value of the unsigned integer pointed to by `bPtr' is bit-wise completed
| before the addition.
*----------------------------------------------------------------------------*/
uint_fast8_t
 softfloat_addComplCarryM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     const uint32_t *bPtr,
     uint_fast8_t carry,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_addComplCarry96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_addComplCarryM' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_addComplCarry96M( aPtr, bPtr, carry, zPtr ) softfloat_addComplCarryM( 3, aPtr, bPtr, carry, zPtr )
#endif

#ifndef softfloat_negXM
/*----------------------------------------------------------------------------
| Replaces the N-bit unsigned integer pointed to by `zPtr' by the
| 2s-complement of itself, where N = `size_words' * 32.  Argument `zPtr'
| points to a `size_words'-long array of 32-bit elements that concatenate in
| the platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_negXM( uint_fast8_t size_words, uint32_t *zPtr );
#endif

#ifndef softfloat_negX96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_negXM' with `size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_negX96M( zPtr ) softfloat_negXM( 3, zPtr )
#endif

#ifndef softfloat_negX128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_negXM' with `size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_negX128M( zPtr ) softfloat_negXM( 4, zPtr )
#endif

#ifndef softfloat_negX160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_negXM' with `size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_negX160M( zPtr ) softfloat_negXM( 5, zPtr )
#endif

#ifndef softfloat_negX256M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_negXM' with `size_words'
| = 8 (N = 256).
*----------------------------------------------------------------------------*/
#define softfloat_negX256M( zPtr ) softfloat_negXM( 8, zPtr )
#endif

#ifndef softfloat_sub1XM
/*----------------------------------------------------------------------------
| Subtracts 1 from the N-bit integer pointed to by `zPtr', where N =
| `size_words' * 32.  The subtraction is modulo 2^N, so any borrow out (carry
| out) is lost.  Argument `zPtr' points to a `size_words'-long array of 32-bit
| elements that concatenate in the platform's normal endian order to form an
| N-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_sub1XM( uint_fast8_t size_words, uint32_t *zPtr );
#endif

#ifndef softfloat_sub1X96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_sub1XM' with `size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X96M( zPtr ) softfloat_sub1XM( 3, zPtr )
#endif

#ifndef softfloat_sub1X160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_sub1XM' with `size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub1X160M( zPtr ) softfloat_sub1XM( 5, zPtr )
#endif

#ifndef softfloat_subM
/*----------------------------------------------------------------------------
| Subtracts the two N-bit integers pointed to by `aPtr' and `bPtr', where N =
| `size_words' * 32.  The subtraction is modulo 2^N, so any borrow out (carry
| out) is lost.  The N-bit difference is stored at the location pointed to by
| `zPtr'.  Each of `aPtr', `bPtr', and `zPtr' points to a `size_words'-long
| array of 32-bit elements that concatenate in the platform's normal endian
| order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_subM(
     uint_fast8_t size_words,
     const uint32_t *aPtr,
     const uint32_t *bPtr,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_sub96M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_subM' with `size_words'
| = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_sub96M( aPtr, bPtr, zPtr ) softfloat_subM( 3, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_sub128M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_subM' with `size_words'
| = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_sub128M( aPtr, bPtr, zPtr ) softfloat_subM( 4, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_sub160M
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_subM' with `size_words'
| = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_sub160M( aPtr, bPtr, zPtr ) softfloat_subM( 5, aPtr, bPtr, zPtr )
#endif

#ifndef softfloat_mul64To128M
/*----------------------------------------------------------------------------
| Multiplies `a' and `b' and stores the 128-bit product at the location
| pointed to by `zPtr'.  Argument `zPtr' points to an array of four 32-bit
| elements that concatenate in the platform's normal endian order to form a
| 128-bit integer.
*----------------------------------------------------------------------------*/
void softfloat_mul64To128M( uint64_t a, uint64_t b, uint32_t *zPtr );
#endif

#ifndef softfloat_mul128MTo256M
/*----------------------------------------------------------------------------
| Multiplies the two 128-bit unsigned integers pointed to by `aPtr' and
| `bPtr', and stores the 256-bit product at the location pointed to by `zPtr'.
| Each of `aPtr' and `bPtr' points to an array of four 32-bit elements that
| concatenate in the platform's normal endian order to form a 128-bit integer.
| Argument `zPtr' points to an array of eight 32-bit elements that concatenate
| to form a 256-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_mul128MTo256M(
     const uint32_t *aPtr, const uint32_t *bPtr, uint32_t *zPtr );
#endif

#ifndef softfloat_remStepMBy32
/*----------------------------------------------------------------------------
| Performs a "remainder reduction step" as follows:  Arguments `remPtr' and
| `bPtr' both point to N-bit unsigned integers, where N = `size_words' * 32.
| Defining R and B as the values of those integers, the expression (R<<`count')
| - B * q is computed modulo 2^N, and the N-bit result is stored at the
| location pointed to by `zPtr'.  Each of `remPtr', `bPtr', and `zPtr' points
| to a `size_words'-long array of 32-bit elements that concatenate in the
| platform's normal endian order to form an N-bit integer.
*----------------------------------------------------------------------------*/
void
 softfloat_remStepMBy32(
     uint_fast8_t size_words,
     const uint32_t *remPtr,
     uint_fast8_t count,
     const uint32_t *bPtr,
     uint32_t q,
     uint32_t *zPtr
 );
#endif

#ifndef softfloat_remStep96MBy32
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_remStepMBy32' with
| `size_words' = 3 (N = 96).
*----------------------------------------------------------------------------*/
#define softfloat_remStep96MBy32( remPtr, count, bPtr, q, zPtr ) softfloat_remStepMBy32( 3, remPtr, count, bPtr, q, zPtr )
#endif

#ifndef softfloat_remStep128MBy32
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_remStepMBy32' with
| `size_words' = 4 (N = 128).
*----------------------------------------------------------------------------*/
#define softfloat_remStep128MBy32( remPtr, count, bPtr, q, zPtr ) softfloat_remStepMBy32( 4, remPtr, count, bPtr, q, zPtr )
#endif

#ifndef softfloat_remStep160MBy32
/*----------------------------------------------------------------------------
| This function or macro is the same as `softfloat_remStepMBy32' with
| `size_words' = 5 (N = 160).
*----------------------------------------------------------------------------*/
#define softfloat_remStep160MBy32( remPtr, count, bPtr, q, zPtr ) softfloat_remStepMBy32( 5, remPtr, count, bPtr, q, zPtr )
#endif

#endif

#endif