summaryrefslogtreecommitdiff
path: root/core/arch/arm/kernel/thread.c
blob: 2aaa0e65fc210d4325563494c23add5a8b289b63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
/*
 * Copyright (c) 2016, Linaro Limited
 * Copyright (c) 2014, STMicroelectronics International N.V.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <platform_config.h>

#include <arm.h>
#include <assert.h>
#include <keep.h>
#include <kernel/misc.h>
#include <kernel/panic.h>
#include <kernel/spinlock.h>
#include <kernel/tee_ta_manager.h>
#include <kernel/thread_defs.h>
#include <kernel/thread.h>
#include <mm/core_memprot.h>
#include <mm/tee_mm.h>
#include <mm/tee_mmu.h>
#include <mm/tee_pager.h>
#include <optee_msg.h>
#include <sm/optee_smc.h>
#include <sm/sm.h>
#include <tee/tee_fs_rpc.h>
#include <tee/tee_cryp_utl.h>
#include <trace.h>
#include <util.h>

#include "thread_private.h"

#ifdef CFG_WITH_ARM_TRUSTED_FW
#define STACK_TMP_OFFS		0
#else
#define STACK_TMP_OFFS		SM_STACK_TMP_RESERVE_SIZE
#endif


#ifdef ARM32
#ifdef CFG_CORE_SANITIZE_KADDRESS
#define STACK_TMP_SIZE		(3072 + STACK_TMP_OFFS)
#else
#define STACK_TMP_SIZE		(1024 + STACK_TMP_OFFS)
#endif
#define STACK_THREAD_SIZE	8192

#ifdef CFG_CORE_SANITIZE_KADDRESS
#define STACK_ABT_SIZE		3072
#else
#define STACK_ABT_SIZE		2048
#endif

#endif /*ARM32*/

#ifdef ARM64
#define STACK_TMP_SIZE		(2048 + STACK_TMP_OFFS)
#define STACK_THREAD_SIZE	8192

#if TRACE_LEVEL > 0
#define STACK_ABT_SIZE		3072
#else
#define STACK_ABT_SIZE		1024
#endif
#endif /*ARM64*/

struct thread_ctx threads[CFG_NUM_THREADS];

static struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE];

#ifdef CFG_WITH_STACK_CANARIES
#ifdef ARM32
#define STACK_CANARY_SIZE	(4 * sizeof(uint32_t))
#endif
#ifdef ARM64
#define STACK_CANARY_SIZE	(8 * sizeof(uint32_t))
#endif
#define START_CANARY_VALUE	0xdededede
#define END_CANARY_VALUE	0xabababab
#define GET_START_CANARY(name, stack_num) name[stack_num][0]
#define GET_END_CANARY(name, stack_num) \
	name[stack_num][sizeof(name[stack_num]) / sizeof(uint32_t) - 1]
#else
#define STACK_CANARY_SIZE	0
#endif

#define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
linkage uint32_t name[num_stacks] \
		[ROUNDUP(stack_size + STACK_CANARY_SIZE, STACK_ALIGNMENT) / \
		sizeof(uint32_t)] \
		__attribute__((section(".nozi_stack"), \
			       aligned(STACK_ALIGNMENT)))

#define STACK_SIZE(stack) (sizeof(stack) - STACK_CANARY_SIZE / 2)

#define GET_STACK(stack) \
	((vaddr_t)(stack) + STACK_SIZE(stack))

DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global */);
DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
#ifndef CFG_WITH_PAGER
DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static);
#endif

const uint32_t stack_tmp_stride = sizeof(stack_tmp[0]);
const uint32_t stack_tmp_offset = STACK_TMP_OFFS + STACK_CANARY_SIZE / 2;

/*
 * These stack setup info are required by secondary boot cores before they
 * each locally enable the pager (the mmu). Hence kept in pager sections.
 */
KEEP_PAGER(stack_tmp);
KEEP_PAGER(stack_tmp_stride);
KEEP_PAGER(stack_tmp_offset);

thread_smc_handler_t thread_std_smc_handler_ptr;
static thread_smc_handler_t thread_fast_smc_handler_ptr;
thread_nintr_handler_t thread_nintr_handler_ptr;
thread_pm_handler_t thread_cpu_on_handler_ptr;
thread_pm_handler_t thread_cpu_off_handler_ptr;
thread_pm_handler_t thread_cpu_suspend_handler_ptr;
thread_pm_handler_t thread_cpu_resume_handler_ptr;
thread_pm_handler_t thread_system_off_handler_ptr;
thread_pm_handler_t thread_system_reset_handler_ptr;


static unsigned int thread_global_lock = SPINLOCK_UNLOCK;
static bool thread_prealloc_rpc_cache;

static void init_canaries(void)
{
#ifdef CFG_WITH_STACK_CANARIES
	size_t n;
#define INIT_CANARY(name)						\
	for (n = 0; n < ARRAY_SIZE(name); n++) {			\
		uint32_t *start_canary = &GET_START_CANARY(name, n);	\
		uint32_t *end_canary = &GET_END_CANARY(name, n);	\
									\
		*start_canary = START_CANARY_VALUE;			\
		*end_canary = END_CANARY_VALUE;				\
		DMSG("#Stack canaries for %s[%zu] with top at %p\n",	\
			#name, n, (void *)(end_canary - 1));		\
		DMSG("watch *%p\n", (void *)end_canary);		\
	}

	INIT_CANARY(stack_tmp);
	INIT_CANARY(stack_abt);
#ifndef CFG_WITH_PAGER
	INIT_CANARY(stack_thread);
#endif
#endif/*CFG_WITH_STACK_CANARIES*/
}

#define CANARY_DIED(stack, loc, n) \
	do { \
		EMSG_RAW("Dead canary at %s of '%s[%zu]'", #loc, #stack, n); \
		panic(); \
	} while (0)

void thread_check_canaries(void)
{
#ifdef CFG_WITH_STACK_CANARIES
	size_t n;

	for (n = 0; n < ARRAY_SIZE(stack_tmp); n++) {
		if (GET_START_CANARY(stack_tmp, n) != START_CANARY_VALUE)
			CANARY_DIED(stack_tmp, start, n);
		if (GET_END_CANARY(stack_tmp, n) != END_CANARY_VALUE)
			CANARY_DIED(stack_tmp, end, n);
	}

	for (n = 0; n < ARRAY_SIZE(stack_abt); n++) {
		if (GET_START_CANARY(stack_abt, n) != START_CANARY_VALUE)
			CANARY_DIED(stack_abt, start, n);
		if (GET_END_CANARY(stack_abt, n) != END_CANARY_VALUE)
			CANARY_DIED(stack_abt, end, n);

	}
#ifndef CFG_WITH_PAGER
	for (n = 0; n < ARRAY_SIZE(stack_thread); n++) {
		if (GET_START_CANARY(stack_thread, n) != START_CANARY_VALUE)
			CANARY_DIED(stack_thread, start, n);
		if (GET_END_CANARY(stack_thread, n) != END_CANARY_VALUE)
			CANARY_DIED(stack_thread, end, n);
	}
#endif
#endif/*CFG_WITH_STACK_CANARIES*/
}

static void lock_global(void)
{
	cpu_spin_lock(&thread_global_lock);
}

static void unlock_global(void)
{
	cpu_spin_unlock(&thread_global_lock);
}

#ifdef ARM32
uint32_t thread_get_exceptions(void)
{
	uint32_t cpsr = read_cpsr();

	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
}

void thread_set_exceptions(uint32_t exceptions)
{
	uint32_t cpsr = read_cpsr();

	/* Foreign interrupts must not be unmasked while holding a spinlock */
	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
		assert_have_no_spinlock();

	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
	write_cpsr(cpsr);
}
#endif /*ARM32*/

#ifdef ARM64
uint32_t thread_get_exceptions(void)
{
	uint32_t daif = read_daif();

	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
}

void thread_set_exceptions(uint32_t exceptions)
{
	uint32_t daif = read_daif();

	/* Foreign interrupts must not be unmasked while holding a spinlock */
	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
		assert_have_no_spinlock();

	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
	write_daif(daif);
}
#endif /*ARM64*/

uint32_t thread_mask_exceptions(uint32_t exceptions)
{
	uint32_t state = thread_get_exceptions();

	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
	return state;
}

void thread_unmask_exceptions(uint32_t state)
{
	thread_set_exceptions(state & THREAD_EXCP_ALL);
}


struct thread_core_local *thread_get_core_local(void)
{
	uint32_t cpu_id = get_core_pos();

	/*
	 * Foreign interrupts must be disabled before playing with core_local
	 * since we otherwise may be rescheduled to a different core in the
	 * middle of this function.
	 */
	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);

	assert(cpu_id < CFG_TEE_CORE_NB_CORE);
	return &thread_core_local[cpu_id];
}

static void thread_lazy_save_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
	struct thread_ctx *thr = threads + thread_get_id();

	thr->vfp_state.ns_saved = false;
#if defined(ARM64) && defined(CFG_WITH_ARM_TRUSTED_FW)
	/*
	 * ARM TF saves and restores CPACR_EL1, so we must assume NS world
	 * uses VFP and always preserve the register file when secure world
	 * is about to use it
	 */
	thr->vfp_state.ns.force_save = true;
#endif
	vfp_lazy_save_state_init(&thr->vfp_state.ns);
#endif /*CFG_WITH_VFP*/
}

static void thread_lazy_restore_ns_vfp(void)
{
#ifdef CFG_WITH_VFP
	struct thread_ctx *thr = threads + thread_get_id();
	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;

	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);

	if (tuv && tuv->lazy_saved && !tuv->saved) {
		vfp_lazy_save_state_final(&tuv->vfp);
		tuv->saved = true;
	}

	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
	thr->vfp_state.ns_saved = false;
#endif /*CFG_WITH_VFP*/
}

#ifdef ARM32
static void init_regs(struct thread_ctx *thread,
		struct thread_smc_args *args)
{
	thread->regs.pc = (uint32_t)thread_std_smc_entry;

	/*
	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
	 * Asynchronous abort and unmasked native interrupts.
	 */
	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
			(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
	/* Enable thumb mode if it's a thumb instruction */
	if (thread->regs.pc & 1)
		thread->regs.cpsr |= CPSR_T;
	/* Reinitialize stack pointer */
	thread->regs.svc_sp = thread->stack_va_end;

	/*
	 * Copy arguments into context. This will make the
	 * arguments appear in r0-r7 when thread is started.
	 */
	thread->regs.r0 = args->a0;
	thread->regs.r1 = args->a1;
	thread->regs.r2 = args->a2;
	thread->regs.r3 = args->a3;
	thread->regs.r4 = args->a4;
	thread->regs.r5 = args->a5;
	thread->regs.r6 = args->a6;
	thread->regs.r7 = args->a7;
}
#endif /*ARM32*/

#ifdef ARM64
static void init_regs(struct thread_ctx *thread,
		struct thread_smc_args *args)
{
	thread->regs.pc = (uint64_t)thread_std_smc_entry;

	/*
	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
	 * Asynchronous abort and unmasked native interrupts.
	 */
	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
				THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
	/* Reinitialize stack pointer */
	thread->regs.sp = thread->stack_va_end;

	/*
	 * Copy arguments into context. This will make the
	 * arguments appear in x0-x7 when thread is started.
	 */
	thread->regs.x[0] = args->a0;
	thread->regs.x[1] = args->a1;
	thread->regs.x[2] = args->a2;
	thread->regs.x[3] = args->a3;
	thread->regs.x[4] = args->a4;
	thread->regs.x[5] = args->a5;
	thread->regs.x[6] = args->a6;
	thread->regs.x[7] = args->a7;

	/* Set up frame pointer as per the Aarch64 AAPCS */
	thread->regs.x[29] = 0;
}
#endif /*ARM64*/

void thread_init_boot_thread(void)
{
	struct thread_core_local *l = thread_get_core_local();
	size_t n;

	for (n = 0; n < CFG_NUM_THREADS; n++) {
		TAILQ_INIT(&threads[n].mutexes);
		TAILQ_INIT(&threads[n].tsd.sess_stack);
#ifdef CFG_SMALL_PAGE_USER_TA
		SLIST_INIT(&threads[n].tsd.pgt_cache);
#endif
	}

	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
		thread_core_local[n].curr_thread = -1;

	l->curr_thread = 0;
	threads[0].state = THREAD_STATE_ACTIVE;
}

void thread_clr_boot_thread(void)
{
	struct thread_core_local *l = thread_get_core_local();

	assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
	assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
	assert(TAILQ_EMPTY(&threads[l->curr_thread].mutexes));
	threads[l->curr_thread].state = THREAD_STATE_FREE;
	l->curr_thread = -1;
}

static void thread_alloc_and_run(struct thread_smc_args *args)
{
	size_t n;
	struct thread_core_local *l = thread_get_core_local();
	bool found_thread = false;

	assert(l->curr_thread == -1);

	lock_global();

	for (n = 0; n < CFG_NUM_THREADS; n++) {
		if (threads[n].state == THREAD_STATE_FREE) {
			threads[n].state = THREAD_STATE_ACTIVE;
			found_thread = true;
			break;
		}
	}

	unlock_global();

	if (!found_thread) {
		args->a0 = OPTEE_SMC_RETURN_ETHREAD_LIMIT;
		return;
	}

	l->curr_thread = n;

	threads[n].flags = 0;
	init_regs(threads + n, args);

	/* Save Hypervisor Client ID */
	threads[n].hyp_clnt_id = args->a7;

	thread_lazy_save_ns_vfp();
	thread_resume(&threads[n].regs);
}

#ifdef ARM32
static void copy_a0_to_a5(struct thread_ctx_regs *regs,
		struct thread_smc_args *args)
{
	/*
	 * Update returned values from RPC, values will appear in
	 * r0-r3 when thread is resumed.
	 */
	regs->r0 = args->a0;
	regs->r1 = args->a1;
	regs->r2 = args->a2;
	regs->r3 = args->a3;
	regs->r4 = args->a4;
	regs->r5 = args->a5;
}
#endif /*ARM32*/

#ifdef ARM64
static void copy_a0_to_a5(struct thread_ctx_regs *regs,
		struct thread_smc_args *args)
{
	/*
	 * Update returned values from RPC, values will appear in
	 * x0-x3 when thread is resumed.
	 */
	regs->x[0] = args->a0;
	regs->x[1] = args->a1;
	regs->x[2] = args->a2;
	regs->x[3] = args->a3;
	regs->x[4] = args->a4;
	regs->x[5] = args->a5;
}
#endif /*ARM64*/

#ifdef ARM32
static bool is_from_user(uint32_t cpsr)
{
	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
}
#endif

#ifdef ARM64
static bool is_from_user(uint32_t cpsr)
{
	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
		return true;
	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
	     SPSR_64_MODE_EL0)
		return true;
	return false;
}
#endif

static bool is_user_mode(struct thread_ctx_regs *regs)
{
	return is_from_user((uint32_t)regs->cpsr);
}

static void thread_resume_from_rpc(struct thread_smc_args *args)
{
	size_t n = args->a3; /* thread id */
	struct thread_core_local *l = thread_get_core_local();
	uint32_t rv = 0;

	assert(l->curr_thread == -1);

	lock_global();

	if (n < CFG_NUM_THREADS &&
	    threads[n].state == THREAD_STATE_SUSPENDED &&
	    args->a7 == threads[n].hyp_clnt_id)
		threads[n].state = THREAD_STATE_ACTIVE;
	else
		rv = OPTEE_SMC_RETURN_ERESUME;

	unlock_global();

	if (rv) {
		args->a0 = rv;
		return;
	}

	l->curr_thread = n;

	if (is_user_mode(&threads[n].regs))
		tee_ta_update_session_utime_resume();

	if (threads[n].have_user_map)
		core_mmu_set_user_map(&threads[n].user_map);

	/*
	 * Return from RPC to request service of a foreign interrupt must not
	 * get parameters from non-secure world.
	 */
	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
		copy_a0_to_a5(&threads[n].regs, args);
		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
	}

	thread_lazy_save_ns_vfp();
	thread_resume(&threads[n].regs);
}

void thread_handle_fast_smc(struct thread_smc_args *args)
{
	thread_check_canaries();
	thread_fast_smc_handler_ptr(args);
	/* Fast handlers must not unmask any exceptions */
	assert(thread_get_exceptions() == THREAD_EXCP_ALL);
}

void thread_handle_std_smc(struct thread_smc_args *args)
{
	thread_check_canaries();

	if (args->a0 == OPTEE_SMC_CALL_RETURN_FROM_RPC)
		thread_resume_from_rpc(args);
	else
		thread_alloc_and_run(args);
}

/* Helper routine for the assembly function thread_std_smc_entry() */
void __thread_std_smc_entry(struct thread_smc_args *args)
{
	struct thread_ctx *thr = threads + thread_get_id();

	if (!thr->rpc_arg) {
		paddr_t parg;
		uint64_t carg;
		void *arg;

		thread_rpc_alloc_arg(
			OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS),
			&parg, &carg);
		if (!parg || !ALIGNMENT_IS_OK(parg, struct optee_msg_arg) ||
		    !(arg = phys_to_virt(parg, MEM_AREA_NSEC_SHM))) {
			thread_rpc_free_arg(carg);
			args->a0 = OPTEE_SMC_RETURN_ENOMEM;
			return;
		}

		thr->rpc_arg = arg;
		thr->rpc_carg = carg;
	}

	thread_std_smc_handler_ptr(args);

	tee_fs_rpc_cache_clear(&thr->tsd);
	if (!thread_prealloc_rpc_cache) {
		thread_rpc_free_arg(thr->rpc_carg);
		thr->rpc_carg = 0;
		thr->rpc_arg = 0;
	}
}

void *thread_get_tmp_sp(void)
{
	struct thread_core_local *l = thread_get_core_local();

	return (void *)l->tmp_stack_va_end;
}

#ifdef ARM64
vaddr_t thread_get_saved_thread_sp(void)
{
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	assert(ct != -1);
	return threads[ct].kern_sp;
}
#endif /*ARM64*/

bool thread_addr_is_in_stack(vaddr_t va)
{
	struct thread_ctx *thr;
	int ct = thread_get_id_may_fail();

	if (ct == -1)
		return false;

	thr = threads + ct;
	return va < thr->stack_va_end &&
	       va >= (thr->stack_va_end - STACK_THREAD_SIZE);
}

void thread_state_free(void)
{
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	assert(ct != -1);
	assert(TAILQ_EMPTY(&threads[ct].mutexes));

	thread_lazy_restore_ns_vfp();
	tee_pager_release_phys(
		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
		STACK_THREAD_SIZE);

	lock_global();

	assert(threads[ct].state == THREAD_STATE_ACTIVE);
	threads[ct].state = THREAD_STATE_FREE;
	threads[ct].flags = 0;
	l->curr_thread = -1;

	unlock_global();
}

#ifdef CFG_WITH_PAGER
static void release_unused_kernel_stack(struct thread_ctx *thr)
{
	vaddr_t sp = thr->regs.svc_sp;
	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
	size_t len = sp - base;

	tee_pager_release_phys((void *)base, len);
}
#else
static void release_unused_kernel_stack(struct thread_ctx *thr __unused)
{
}
#endif

int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
{
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	assert(ct != -1);

	thread_check_canaries();

	release_unused_kernel_stack(threads + ct);

	if (is_from_user(cpsr)) {
		thread_user_save_vfp();
		tee_ta_update_session_utime_suspend();
		tee_ta_gprof_sample_pc(pc);
	}
	thread_lazy_restore_ns_vfp();

	lock_global();

	assert(threads[ct].state == THREAD_STATE_ACTIVE);
	threads[ct].flags |= flags;
	threads[ct].regs.cpsr = cpsr;
	threads[ct].regs.pc = pc;
	threads[ct].state = THREAD_STATE_SUSPENDED;

	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
	if (threads[ct].have_user_map) {
		core_mmu_get_user_map(&threads[ct].user_map);
		core_mmu_set_user_map(NULL);
	}

	l->curr_thread = -1;

	unlock_global();

	return ct;
}

#ifdef ARM32
static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
{
	l->tmp_stack_va_end = sp;
	thread_set_irq_sp(sp);
	thread_set_fiq_sp(sp);
}

static void set_abt_stack(struct thread_core_local *l __unused, vaddr_t sp)
{
	thread_set_abt_sp(sp);
}
#endif /*ARM32*/

#ifdef ARM64
static void set_tmp_stack(struct thread_core_local *l, vaddr_t sp)
{
	/*
	 * We're already using the tmp stack when this function is called
	 * so there's no need to assign it to any stack pointer. However,
	 * we'll need to restore it at different times so store it here.
	 */
	l->tmp_stack_va_end = sp;
}

static void set_abt_stack(struct thread_core_local *l, vaddr_t sp)
{
	l->abt_stack_va_end = sp;
}
#endif /*ARM64*/

bool thread_init_stack(uint32_t thread_id, vaddr_t sp)
{
	if (thread_id >= CFG_NUM_THREADS)
		return false;
	threads[thread_id].stack_va_end = sp;
	return true;
}

int thread_get_id_may_fail(void)
{
	/*
	 * thread_get_core_local() requires foreign interrupts to be disabled
	 */
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	thread_unmask_exceptions(exceptions);
	return ct;
}

int thread_get_id(void)
{
	int ct = thread_get_id_may_fail();

	assert(ct >= 0 && ct < CFG_NUM_THREADS);
	return ct;
}

static void init_handlers(const struct thread_handlers *handlers)
{
	thread_std_smc_handler_ptr = handlers->std_smc;
	thread_fast_smc_handler_ptr = handlers->fast_smc;
	thread_nintr_handler_ptr = handlers->nintr;
	thread_cpu_on_handler_ptr = handlers->cpu_on;
	thread_cpu_off_handler_ptr = handlers->cpu_off;
	thread_cpu_suspend_handler_ptr = handlers->cpu_suspend;
	thread_cpu_resume_handler_ptr = handlers->cpu_resume;
	thread_system_off_handler_ptr = handlers->system_off;
	thread_system_reset_handler_ptr = handlers->system_reset;
}

#ifdef CFG_WITH_PAGER
static void init_thread_stacks(void)
{
	size_t n;

	/*
	 * Allocate virtual memory for thread stacks.
	 */
	for (n = 0; n < CFG_NUM_THREADS; n++) {
		tee_mm_entry_t *mm;
		vaddr_t sp;

		/* Find vmem for thread stack and its protection gap */
		mm = tee_mm_alloc(&tee_mm_vcore,
				  SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
		assert(mm);

		/* Claim eventual physical page */
		tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
				    true);

		/* Add the area to the pager */
		tee_pager_add_core_area(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
					tee_mm_get_bytes(mm) - SMALL_PAGE_SIZE,
					TEE_MATTR_PRW | TEE_MATTR_LOCKED,
					NULL, NULL);

		/* init effective stack */
		sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
		if (!thread_init_stack(n, sp))
			panic("init stack failed");
	}
}
#else
static void init_thread_stacks(void)
{
	size_t n;

	/* Assign the thread stacks */
	for (n = 0; n < CFG_NUM_THREADS; n++) {
		if (!thread_init_stack(n, GET_STACK(stack_thread[n])))
			panic("thread_init_stack failed");
	}
}
#endif /*CFG_WITH_PAGER*/

void thread_init_primary(const struct thread_handlers *handlers)
{
	init_handlers(handlers);

	/* Initialize canaries around the stacks */
	init_canaries();

	init_thread_stacks();
	pgt_init();
}

static void init_sec_mon(size_t pos __maybe_unused)
{
#if !defined(CFG_WITH_ARM_TRUSTED_FW)
	/* Initialize secure monitor */
	sm_init(GET_STACK(stack_tmp[pos]));
#endif
}

void thread_init_per_cpu(void)
{
	size_t pos = get_core_pos();
	struct thread_core_local *l = thread_get_core_local();

	init_sec_mon(pos);

	set_tmp_stack(l, GET_STACK(stack_tmp[pos]) - STACK_TMP_OFFS);
	set_abt_stack(l, GET_STACK(stack_abt[pos]));

	thread_init_vbar();
}

struct thread_specific_data *thread_get_tsd(void)
{
	return &threads[thread_get_id()].tsd;
}

struct thread_ctx_regs *thread_get_ctx_regs(void)
{
	struct thread_core_local *l = thread_get_core_local();

	assert(l->curr_thread != -1);
	return &threads[l->curr_thread].regs;
}

void thread_set_foreign_intr(bool enable)
{
	/* thread_get_core_local() requires foreign interrupts to be disabled */
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
	struct thread_core_local *l;

	l = thread_get_core_local();

	assert(l->curr_thread != -1);

	if (enable) {
		threads[l->curr_thread].flags |=
					THREAD_FLAGS_FOREIGN_INTR_ENABLE;
		thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
	} else {
		/*
		 * No need to disable foreign interrupts here since they're
		 * already disabled above.
		 */
		threads[l->curr_thread].flags &=
					~THREAD_FLAGS_FOREIGN_INTR_ENABLE;
	}
}

void thread_restore_foreign_intr(void)
{
	/* thread_get_core_local() requires foreign interrupts to be disabled */
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
	struct thread_core_local *l;

	l = thread_get_core_local();

	assert(l->curr_thread != -1);

	if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE)
		thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
}

#ifdef CFG_WITH_VFP
uint32_t thread_kernel_enable_vfp(void)
{
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
	struct thread_ctx *thr = threads + thread_get_id();
	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;

	assert(!vfp_is_enabled());

	if (!thr->vfp_state.ns_saved) {
		vfp_lazy_save_state_final(&thr->vfp_state.ns);
		thr->vfp_state.ns_saved = true;
	} else if (thr->vfp_state.sec_lazy_saved &&
		   !thr->vfp_state.sec_saved) {
		/*
		 * This happens when we're handling an abort while the
		 * thread was using the VFP state.
		 */
		vfp_lazy_save_state_final(&thr->vfp_state.sec);
		thr->vfp_state.sec_saved = true;
	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
		/*
		 * This can happen either during syscall or abort
		 * processing (while processing a syscall).
		 */
		vfp_lazy_save_state_final(&tuv->vfp);
		tuv->saved = true;
	}

	vfp_enable();
	return exceptions;
}

void thread_kernel_disable_vfp(uint32_t state)
{
	uint32_t exceptions;

	assert(vfp_is_enabled());

	vfp_disable();
	exceptions = thread_get_exceptions();
	assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
	exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
	exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
	thread_set_exceptions(exceptions);
}

void thread_kernel_save_vfp(void)
{
	struct thread_ctx *thr = threads + thread_get_id();

	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
	if (vfp_is_enabled()) {
		vfp_lazy_save_state_init(&thr->vfp_state.sec);
		thr->vfp_state.sec_lazy_saved = true;
	}
}

void thread_kernel_restore_vfp(void)
{
	struct thread_ctx *thr = threads + thread_get_id();

	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
	assert(!vfp_is_enabled());
	if (thr->vfp_state.sec_lazy_saved) {
		vfp_lazy_restore_state(&thr->vfp_state.sec,
				       thr->vfp_state.sec_saved);
		thr->vfp_state.sec_saved = false;
		thr->vfp_state.sec_lazy_saved = false;
	}
}

void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
{
	struct thread_ctx *thr = threads + thread_get_id();
	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;

	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
	assert(!vfp_is_enabled());

	if (!thr->vfp_state.ns_saved) {
		vfp_lazy_save_state_final(&thr->vfp_state.ns);
		thr->vfp_state.ns_saved = true;
	} else if (tuv && uvfp != tuv) {
		if (tuv->lazy_saved && !tuv->saved) {
			vfp_lazy_save_state_final(&tuv->vfp);
			tuv->saved = true;
		}
	}

	if (uvfp->lazy_saved)
		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
	uvfp->lazy_saved = false;
	uvfp->saved = false;

	thr->vfp_state.uvfp = uvfp;
	vfp_enable();
}

void thread_user_save_vfp(void)
{
	struct thread_ctx *thr = threads + thread_get_id();
	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;

	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
	if (!vfp_is_enabled())
		return;

	assert(tuv && !tuv->lazy_saved && !tuv->saved);
	vfp_lazy_save_state_init(&tuv->vfp);
	tuv->lazy_saved = true;
}

void thread_user_clear_vfp(struct thread_user_vfp_state *uvfp)
{
	struct thread_ctx *thr = threads + thread_get_id();

	if (uvfp == thr->vfp_state.uvfp)
		thr->vfp_state.uvfp = NULL;
	uvfp->lazy_saved = false;
	uvfp->saved = false;
}
#endif /*CFG_WITH_VFP*/

#ifdef ARM32
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
	uint32_t s;

	if (!is_32bit)
		return false;

	s = read_spsr();
	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
	s |= CPSR_MODE_USR;
	if (entry_func & 1)
		s |= CPSR_T;
	*spsr = s;
	return true;
}
#endif

#ifdef ARM64
static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
{
	uint32_t s;

	if (is_32bit) {
		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
	} else {
		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
	}

	*spsr = s;
	return true;
}
#endif

uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
		unsigned long a2, unsigned long a3, unsigned long user_sp,
		unsigned long entry_func, bool is_32bit,
		uint32_t *exit_status0, uint32_t *exit_status1)
{
	uint32_t spsr;

	tee_ta_update_session_utime_resume();

	if (!get_spsr(is_32bit, entry_func, &spsr)) {
		*exit_status0 = 1; /* panic */
		*exit_status1 = 0xbadbadba;
		return 0;
	}
	return __thread_enter_user_mode(a0, a1, a2, a3, user_sp, entry_func,
					spsr, exit_status0, exit_status1);
}

void thread_add_mutex(struct mutex *m)
{
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
	assert(m->owner_id == MUTEX_OWNER_ID_NONE);
	m->owner_id = ct;
	TAILQ_INSERT_TAIL(&threads[ct].mutexes, m, link);
}

void thread_rem_mutex(struct mutex *m)
{
	struct thread_core_local *l = thread_get_core_local();
	int ct = l->curr_thread;

	assert(ct != -1 && threads[ct].state == THREAD_STATE_ACTIVE);
	assert(m->owner_id == ct);
	m->owner_id = MUTEX_OWNER_ID_NONE;
	TAILQ_REMOVE(&threads[ct].mutexes, m, link);
}

bool thread_disable_prealloc_rpc_cache(uint64_t *cookie)
{
	bool rv;
	size_t n;
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);

	lock_global();

	for (n = 0; n < CFG_NUM_THREADS; n++) {
		if (threads[n].state != THREAD_STATE_FREE) {
			rv = false;
			goto out;
		}
	}

	rv = true;
	for (n = 0; n < CFG_NUM_THREADS; n++) {
		if (threads[n].rpc_arg) {
			*cookie = threads[n].rpc_carg;
			threads[n].rpc_carg = 0;
			threads[n].rpc_arg = NULL;
			goto out;
		}
	}

	*cookie = 0;
	thread_prealloc_rpc_cache = false;
out:
	unlock_global();
	thread_unmask_exceptions(exceptions);
	return rv;
}

bool thread_enable_prealloc_rpc_cache(void)
{
	bool rv;
	size_t n;
	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);

	lock_global();

	for (n = 0; n < CFG_NUM_THREADS; n++) {
		if (threads[n].state != THREAD_STATE_FREE) {
			rv = false;
			goto out;
		}
	}

	rv = true;
	thread_prealloc_rpc_cache = true;
out:
	unlock_global();
	thread_unmask_exceptions(exceptions);
	return rv;
}

static uint32_t rpc_cmd_nolock(uint32_t cmd, size_t num_params,
		struct optee_msg_param *params)
{
	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
	struct thread_ctx *thr = threads + thread_get_id();
	struct optee_msg_arg *arg = thr->rpc_arg;
	uint64_t carg = thr->rpc_carg;
	const size_t params_size = sizeof(struct optee_msg_param) * num_params;
	size_t n;

	assert(arg && carg && num_params <= THREAD_RPC_MAX_NUM_PARAMS);


	/*
	 * Break recursion in case plat_prng_add_jitter_entropy_norpc()
	 * sleeps on a mutex or unlocks a mutex with a sleeper (contended
	 * mutex).
	 */
	if (cmd != OPTEE_MSG_RPC_CMD_WAIT_QUEUE)
		plat_prng_add_jitter_entropy_norpc();

	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(THREAD_RPC_MAX_NUM_PARAMS));
	arg->cmd = cmd;
	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
	arg->num_params = num_params;
	memcpy(OPTEE_MSG_GET_PARAMS(arg), params, params_size);

	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
	thread_rpc(rpc_args);
	for (n = 0; n < num_params; n++) {
		switch (params[n].attr & OPTEE_MSG_ATTR_TYPE_MASK) {
		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
			memcpy(params + n, OPTEE_MSG_GET_PARAMS(arg) + n,
			       sizeof(struct optee_msg_param));
			break;
		default:
			break;
		}
	}
	return arg->ret;
}

uint32_t thread_rpc_cmd(uint32_t cmd, size_t num_params,
		struct optee_msg_param *params)
{
	uint32_t ret;

	ret = rpc_cmd_nolock(cmd, num_params, params);

	return ret;
}

static bool check_alloced_shm(paddr_t pa, size_t len, size_t align)
{
	if (pa & (align - 1))
		return false;
	return core_pbuf_is(CORE_MEM_NSEC_SHM, pa, len);
}

void thread_rpc_free_arg(uint64_t cookie)
{
	if (cookie) {
		uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
			OPTEE_SMC_RETURN_RPC_FREE
		};

		reg_pair_from_64(cookie, rpc_args + 1, rpc_args + 2);
		thread_rpc(rpc_args);
	}
}

void thread_rpc_alloc_arg(size_t size, paddr_t *arg, uint64_t *cookie)
{
	paddr_t pa;
	uint64_t co;
	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = {
		OPTEE_SMC_RETURN_RPC_ALLOC, size
	};

	thread_rpc(rpc_args);

	pa = reg_pair_to_64(rpc_args[1], rpc_args[2]);
	co = reg_pair_to_64(rpc_args[4], rpc_args[5]);
	if (!check_alloced_shm(pa, size, sizeof(uint64_t))) {
		thread_rpc_free_arg(co);
		pa = 0;
		co = 0;
	}

	*arg = pa;
	*cookie = co;
}

/**
 * Free physical memory previously allocated with thread_rpc_alloc()
 *
 * @cookie:	cookie received when allocating the buffer
 * @bt:		 must be the same as supplied when allocating
 */
static void thread_rpc_free(unsigned int bt, uint64_t cookie)
{
	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
	struct thread_ctx *thr = threads + thread_get_id();
	struct optee_msg_arg *arg = thr->rpc_arg;
	uint64_t carg = thr->rpc_carg;
	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);

	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_FREE;
	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
	arg->num_params = 1;

	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
	params[0].u.value.a = bt;
	params[0].u.value.b = cookie;
	params[0].u.value.c = 0;

	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
	thread_rpc(rpc_args);
}

/**
 * Allocates shared memory buffer via RPC
 *
 * @size:	size in bytes of shared memory buffer
 * @align:	required alignment of buffer
 * @bt:		buffer type OPTEE_MSG_RPC_SHM_TYPE_*
 * @payload:	returned physical pointer to buffer, 0 if allocation
 *		failed.
 * @cookie:	returned cookie used when freeing the buffer
 */
static void thread_rpc_alloc(size_t size, size_t align, unsigned int bt,
			paddr_t *payload, uint64_t *cookie)
{
	uint32_t rpc_args[THREAD_RPC_NUM_ARGS] = { OPTEE_SMC_RETURN_RPC_CMD };
	struct thread_ctx *thr = threads + thread_get_id();
	struct optee_msg_arg *arg = thr->rpc_arg;
	uint64_t carg = thr->rpc_carg;
	struct optee_msg_param *params = OPTEE_MSG_GET_PARAMS(arg);

	memset(arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
	arg->cmd = OPTEE_MSG_RPC_CMD_SHM_ALLOC;
	arg->ret = TEE_ERROR_GENERIC; /* in case value isn't updated */
	arg->num_params = 1;

	params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
	params[0].u.value.a = bt;
	params[0].u.value.b = size;
	params[0].u.value.c = align;

	reg_pair_from_64(carg, rpc_args + 1, rpc_args + 2);
	thread_rpc(rpc_args);
	if (arg->ret != TEE_SUCCESS)
		goto fail;

	if (arg->num_params != 1)
		goto fail;

	if (params[0].attr != OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT)
		goto fail;

	if (!check_alloced_shm(params[0].u.tmem.buf_ptr, size, align)) {
		thread_rpc_free(bt, params[0].u.tmem.shm_ref);
		goto fail;
	}

	*payload = params[0].u.tmem.buf_ptr;
	*cookie = params[0].u.tmem.shm_ref;
	return;
fail:
	*payload = 0;
	*cookie = 0;
}

void thread_rpc_alloc_payload(size_t size, paddr_t *payload, uint64_t *cookie)
{
	thread_rpc_alloc(size, 8, OPTEE_MSG_RPC_SHM_TYPE_APPL, payload, cookie);
}

void thread_rpc_free_payload(uint64_t cookie)
{
	thread_rpc_free(OPTEE_MSG_RPC_SHM_TYPE_APPL, cookie);
}