diff options
-rw-r--r-- | packaging/inference-engine-mlapi.spec | 2 | ||||
-rw-r--r-- | src/inference_engine_mlapi.cpp | 6 |
2 files changed, 4 insertions, 4 deletions
diff --git a/packaging/inference-engine-mlapi.spec b/packaging/inference-engine-mlapi.spec index ad18b74..d2ea2d9 100644 --- a/packaging/inference-engine-mlapi.spec +++ b/packaging/inference-engine-mlapi.spec @@ -1,6 +1,6 @@ Name: inference-engine-mlapi Summary: ML Single API backend of NNStreamer for MediaVision -Version: 0.4.9 +Version: 0.4.10 Release: 0 Group: Multimedia/Libraries License: Apache-2.0 diff --git a/src/inference_engine_mlapi.cpp b/src/inference_engine_mlapi.cpp index 4f3adfc..7fbf997 100644 --- a/src/inference_engine_mlapi.cpp +++ b/src/inference_engine_mlapi.cpp @@ -176,8 +176,8 @@ namespace MLAPIImpl return INFERENCE_ENGINE_ERROR_INVALID_OPERATION; } - // TODO. nnstreamer needs fixed dimention with 4 for nntrainer tensor filter. Why?? - std::vector<unsigned int> indim(4, 1); + // NNStreamer uses a fixed dimention with 16. + std::vector<unsigned int> indim(ML_TENSOR_RANK_LIMIT, 1); LOGI("Input tensor(%zu) shape:", layer_idx); @@ -616,7 +616,7 @@ namespace MLAPIImpl for (auto& output : mDesignated_outputs) { inference_engine_tensor_info tensor_info; ml_tensor_type_e out_type; - unsigned int out_dim[MAX_TENSOR_DIMENSION_SIZE]; + unsigned int out_dim[ML_TENSOR_RANK_LIMIT]; size_t out_size = 1; ret = ml_tensors_info_get_tensor_type(mOutputInfoHandle, output.second, &out_type); |