summaryrefslogtreecommitdiff
path: root/tools/nnapi_quickcheck/tests/gather_1.cpp
blob: b916676c74129325c2e6e9411adc731587f4cec7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "gtest/gtest.h"

#include "tflite/kernels/register.h"
#include "tensorflow/contrib/lite/model.h"
#include "tensorflow/contrib/lite/builtin_op_data.h"

#include "env.h"
#include "memory.h"
#include "util/environment.h"

#include "tflite/Diff.h"
#include "tflite/interp/FunctionBuilder.h"

#include <chrono>
#include <iostream>

using namespace tflite;
using namespace tflite::ops::builtin;

TEST(NNAPI_Quickcheck_gather_1, simple_test)
{
  // Set random seed
  int SEED = std::chrono::system_clock::now().time_since_epoch().count();

  nnfw::util::env::IntAccessor("SEED").access(SEED);

  // Set random test parameters
  int verbose = 0;
  int tolerance = 1;

  nnfw::util::env::IntAccessor("VERBOSE").access(verbose);
  nnfw::util::env::IntAccessor("TOLERANCE").access(tolerance);

#define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE);
#include "gather_1.lst"
#undef INT_VALUE

  const int32_t INPUT_DATA = INPUT_DATA_Value();
  const int32_t INDEX_DATA = INDEX_DATA_Value();

  const int32_t OUTPUT_DATA = INDEX_DATA;

  std::cout << "Configurations:" << std::endl;
#define PRINT_NEWLINE()     \
  {                         \
    std::cout << std::endl; \
  }
#define PRINT_VALUE(value)                                       \
  {                                                              \
    std::cout << "  " << #value << ": " << (value) << std::endl; \
  }
  PRINT_VALUE(SEED);
  PRINT_NEWLINE();

  PRINT_VALUE(INPUT_DATA);
  PRINT_VALUE(INDEX_DATA);
  PRINT_NEWLINE();

  PRINT_VALUE(OUTPUT_DATA);
#undef PRINT_VALUE
#undef PRINT_NEWLINE

  auto setup = [&](Interpreter &interp) {
    // Comment from 'context.h'
    //
    // Parameters for asymmetric quantization. Quantized values can be converted
    // back to float using:
    //    real_value = scale * (quantized_value - zero_point);
    //
    // Q: Is this necessary?
    TfLiteQuantizationParams quantization;

    quantization.scale = 1;
    quantization.zero_point = 0;

    // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N)
    interp.AddTensors(3);

    // Configure INPUT_DATA
    interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "input" /* name */,
                                        {INPUT_DATA} /* dims */, quantization);

    // Configure INDEX_DATA
    interp.SetTensorParametersReadWrite(1, kTfLiteInt32 /* type */, "index" /* name */,
                                        {INDEX_DATA} /* dims */, quantization);

    // Configure OUTPUT_VALUES
    interp.SetTensorParametersReadWrite(2, kTfLiteFloat32 /* type */, "output_data" /* name */,
                                        {OUTPUT_DATA} /* dims */, quantization);

    auto *param = reinterpret_cast<TfLiteGatherParams *>(malloc(sizeof(TfLiteGatherParams)));

    param->axis = 0;

    // Add GATHER Node
    // Run GATHER and store its result into Tensor #2
    //  - Read input data and index_data from Tensor #0 and #1, respectively
    interp.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, reinterpret_cast<void *>(param),
                                 BuiltinOpResolver().FindOp(BuiltinOperator_GATHER, 1));

    // Set Tensor #0 and #1 as Input, and Tensor #2 as Output
    interp.SetInputs({0, 1});
    interp.SetOutputs({2});
  };

  const nnfw::support::tflite::interp::FunctionBuilder builder(setup);

  RandomTestParam param;

  param.verbose = verbose;
  param.tolerance = tolerance;

  int res = RandomTestRunner{SEED, param}.run(builder);

  EXPECT_EQ(res, 0);
}