summaryrefslogtreecommitdiff
path: root/tools/nnapi_quickcheck/tests/fully_connected_quan_1.cpp
blob: 2c6883546db4f0d6b29d1cf9109bac3cdc1beb0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "gtest/gtest.h"

#include "tflite/ext/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/builtin_op_data.h"

#include "env.h"
#include "misc/environment.h"

#include "tflite/Diff.h"
#include "tflite/Quantization.h"
#include "tflite/interp/FunctionBuilder.h"

#include <iostream>
#include <cassert>

#include <chrono>
#include <random>

using namespace tflite;
using namespace nnfw::tflite;

template <typename T> T *make_malloc(void) { return reinterpret_cast<T *>(malloc(sizeof(T))); }

TEST(NNAPI_Quickcheck_fully_connected_1, simple_test)
{
  int verbose = 0;
  int tolerance = 1;

  nnfw::misc::env::IntAccessor("VERBOSE").access(verbose);
  nnfw::misc::env::IntAccessor("TOLERANCE").access(tolerance);

  // Set random seed
  int SEED = std::chrono::system_clock::now().time_since_epoch().count();

  nnfw::misc::env::IntAccessor("SEED").access(SEED);

#define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE);
#include "fully_connected_quan_1.lst"
#undef INT_VALUE

  const int32_t IFM_C = IFM_C_Value();
  const int32_t IFM_H = IFM_H_Value();
  const int32_t IFM_W = IFM_W_Value();

  const int32_t KER_H = KER_H_Value();
  const int32_t KER_W = IFM_C_Value() * IFM_H_Value() * IFM_W_Value();

  const int32_t OUT_LEN = KER_H;

  // Initialize random number generator
  std::minstd_rand random(SEED);

  std::cout << "Configurations:" << std::endl;
#define PRINT_NEWLINE()     \
  {                         \
    std::cout << std::endl; \
  }
#define PRINT_VALUE(value)                                       \
  {                                                              \
    std::cout << "  " << #value << ": " << (value) << std::endl; \
  }
  PRINT_VALUE(SEED);
  PRINT_NEWLINE();

  PRINT_VALUE(IFM_C);
  PRINT_VALUE(IFM_H);
  PRINT_VALUE(IFM_W);
  PRINT_NEWLINE();

  PRINT_VALUE(KER_H);
  PRINT_VALUE(KER_W);
  PRINT_NEWLINE();

  PRINT_VALUE(OUT_LEN);
#undef PRINT_VALUE
#undef PRINT_NEWLINE

  // Configure Kernel Data
  const uint32_t kernel_size = KER_H * KER_W;
  float kernel_data[kernel_size] = {
      0.0f,
  };

  // Fill kernel data with random data
  {
    std::normal_distribution<float> kernel_dist(-1.0f, +1.0f);

    for (uint32_t off = 0; off < kernel_size; ++off)
    {
      kernel_data[off++] = kernel_dist(random);
    }
  }

  // Configure Bias Data
  const auto bias_size = KER_H;
  int32_t bias_data[bias_size] = {
      0,
  };

  // Fill bias data with random data
  {
    std::normal_distribution<float> bias_dist(-1.0f, +1.0f);

    for (uint32_t off = 0; off < bias_size; ++off)
    {
      bias_data[off] = static_cast<int32_t>(bias_dist(random));
    }
  }

  auto setup = [&](Interpreter &interp) {
    // Comment from 'context.h'
    //
    // Parameters for asymmetric quantization. Quantized values can be converted
    // back to float using:
    //    real_value = scale * (quantized_value - zero_point);
    //
    // Q: Is this necessary?
    TfLiteQuantizationParams quantization = make_default_quantization();
    quantization.scale = FLOAT_NEAREST_TO_1;
    quantization.zero_point = 0;

    // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N)
    interp.AddTensors(4);

    // Configure OFM
    interp.SetTensorParametersReadWrite(0, kTfLiteUInt8 /* type */, "output" /* name */,
                                        {1 /*N*/, KER_H} /* dims */, quantization);

    // Configure IFM
    interp.SetTensorParametersReadWrite(1, kTfLiteUInt8 /* type */, "input" /* name */,
                                        {1 /*N*/, IFM_H, IFM_W, IFM_C} /* dims */, quantization);

    // NOTE kernel_data & bias_data should live longer than interpreter!
    interp.SetTensorParametersReadOnly(
        2, kTfLiteUInt8 /* type */, "filter" /* name */, {KER_H, KER_W} /* dims */, quantization,
        reinterpret_cast<const char *>(kernel_data), kernel_size * sizeof(uint8_t));

    interp.SetTensorParametersReadOnly(
        3, kTfLiteInt32 /* type */, "bias" /* name */, {bias_size} /* dims */, quantization,
        reinterpret_cast<const char *>(bias_data), bias_size * sizeof(int32_t));

    // Add Fully Connected Node
    //
    // NOTE AddNodeWithParameters take the ownership of param, and deallocate it with free
    //      So, param should be allocated with malloc
    auto param = make_malloc<TfLiteFullyConnectedParams>();

    param->activation = kTfLiteActRelu;

    // Run Convolution and store its result into Tensor #0
    //  - Read IFM from Tensor #1
    //  - Read Filter from Tensor #2,
    //  - Read Bias from Tensor #3
    interp.AddNodeWithParameters({1, 2, 3}, {0}, nullptr, 0, reinterpret_cast<void *>(param),
                                 BuiltinOpResolver().FindOp(BuiltinOperator_FULLY_CONNECTED, 1));

    // Set Tensor #1 as Input #0, and Tensor #0 as Output #0
    interp.SetInputs({1});
    interp.SetOutputs({0});
  };

  const nnfw::tflite::FunctionBuilder builder(setup);

  RandomTestParam param;

  param.verbose = verbose;
  param.tolerance = tolerance;

  int res = RandomTestRunner{SEED, param}.run(builder);

  EXPECT_EQ(res, 0);
}