summaryrefslogtreecommitdiff
path: root/tools/nnapi_quickcheck/tests/avg_pool_quan_1.cpp
blob: 86f35f76df215beae5978fe217f12570d55ce17a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "gtest/gtest.h"

#include "tflite/ext/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/builtin_op_data.h"

#include "env.h"
#include "memory.h"
#include "misc/environment.h"

#include "tflite/Diff.h"
#include "tflite/Quantization.h"
#include "tflite/interp/FunctionBuilder.h"

#include <chrono>
#include <iostream>

using namespace tflite;
using namespace nnfw::tflite;

TEST(NNAPI_Quickcheck_avg_pool_1, simple_test)
{
  // Set random seed
  int SEED = std::chrono::system_clock::now().time_since_epoch().count();

  nnfw::misc::env::IntAccessor("SEED").access(SEED);

  // Set random test parameters
  int verbose = 0;
  int tolerance = 1;

  nnfw::misc::env::IntAccessor("VERBOSE").access(verbose);
  nnfw::misc::env::IntAccessor("TOLERANCE").access(tolerance);

#define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE);
#include "avg_pool_quan_1.lst"
#undef INT_VALUE

  const int32_t IFM_C = IFM_C_Value();
  const int32_t IFM_H = IFM_H_Value();
  const int32_t IFM_W = IFM_W_Value();

  const int32_t KER_H = KER_H_Value();
  const int32_t KER_W = KER_W_Value();

  const int32_t OFM_C = IFM_C;
  const int32_t OFM_H = (IFM_H - KER_H) + 1;
  const int32_t OFM_W = (IFM_W - KER_W) + 1;

  std::cout << "Configurations:" << std::endl;
#define PRINT_NEWLINE()     \
  {                         \
    std::cout << std::endl; \
  }
#define PRINT_VALUE(value)                                       \
  {                                                              \
    std::cout << "  " << #value << ": " << (value) << std::endl; \
  }
  PRINT_VALUE(SEED);
  PRINT_NEWLINE();

  PRINT_VALUE(IFM_C);
  PRINT_VALUE(IFM_H);
  PRINT_VALUE(IFM_W);
  PRINT_NEWLINE();

  PRINT_VALUE(KER_H);
  PRINT_VALUE(KER_W);
  PRINT_NEWLINE();

  PRINT_VALUE(OFM_C);
  PRINT_VALUE(OFM_H);
  PRINT_VALUE(OFM_W);
#undef PRINT_VALUE
#undef PRINT_NEWLINE

  auto setup = [&](Interpreter &interp) {
    // Comment from 'context.h'
    //
    // Parameters for asymmetric quantization. Quantized values can be converted
    // back to float using:
    //    real_value = scale * (quantized_value - zero_point);
    //
    // Q: Is this necessary?
    TfLiteQuantizationParams quantization;
    quantization.scale = 1.0f;
    quantization.zero_point = 0;

    // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N)
    interp.AddTensors(2);

    // Configure OFM
    interp.SetTensorParametersReadWrite(0, kTfLiteUInt8 /* type */, "output" /* name */,
                                        {1 /*N*/, OFM_H, OFM_W, OFM_C} /* dims */, quantization);

    // Configure IFM
    interp.SetTensorParametersReadWrite(1, kTfLiteUInt8 /* type */, "input" /* name */,
                                        {1 /*N*/, IFM_H, IFM_W, IFM_C} /* dims */, quantization);

    // Add Max Pooling Node
    //
    // NOTE AddNodeWithParameters take the ownership of param, and deallocate it with free
    //      So, param should be allocated with malloc
    auto param = make_alloc<TfLitePoolParams>();

    param->padding = kTfLitePaddingValid;
    param->stride_width = 1;
    param->stride_height = 1;
    param->filter_width = KER_W;
    param->filter_height = KER_H;
    param->activation = kTfLiteActNone;

    // Run Convolution and store its result into Tensor #0
    //  - Read IFM from Tensor #1
    interp.AddNodeWithParameters({1}, {0}, nullptr, 0, reinterpret_cast<void *>(param),
                                 BuiltinOpResolver().FindOp(BuiltinOperator_AVERAGE_POOL_2D, 1));

    // Set Tensor #1 as Input #0, and Tensor #0 as Output #0
    interp.SetInputs({1});
    interp.SetOutputs({0});
  };

  const nnfw::tflite::FunctionBuilder builder(setup);

  RandomTestParam param;

  param.verbose = verbose;
  param.tolerance = tolerance;

  int res = RandomTestRunner{SEED, param}.run(builder);

  EXPECT_EQ(res, 0);
}