summaryrefslogtreecommitdiff
path: root/tools/nnapi_quickcheck/tests/add_9.cpp
blob: f3cf02875e12d712fce21bdd1e40a00a1efd370d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "gtest/gtest.h"

#include "support/tflite/kernels/register.h"
#include "tensorflow/contrib/lite/model.h"
#include "tensorflow/contrib/lite/builtin_op_data.h"

#include "env.h"
#include "memory.h"
#include "util/environment.h"

#include "support/tflite/Diff.h"
#include "support/tflite/Quantization.h"
#include "support/tflite/interp/FunctionBuilder.h"

#include <iostream>
#include <cassert>

#include <chrono>
#include <random>

using namespace tflite;
using namespace tflite::ops::builtin;

TEST(NNAPI_Quickcheck_add_9, simple_test)
{
  int verbose = 1;
  int tolerance = 1;

  nnfw::util::env::IntAccessor("VERBOSE").access(verbose);
  nnfw::util::env::IntAccessor("TOLERANCE").access(tolerance);

  // Set random seed
  int SEED = std::chrono::system_clock::now().time_since_epoch().count();

  nnfw::util::env::IntAccessor("SEED").access(SEED);

#define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE);
#include "add_9.lst"
#undef INT_VALUE

  const int32_t LEFT_N = LEFT_N_Value();
  const int32_t LEFT_C = LEFT_C_Value();
  const int32_t LEFT_H = LEFT_H_Value();
  const int32_t LEFT_W = LEFT_W_Value();

  const int32_t RIGHT_N = RIGHT_N_Value();
  const int32_t RIGHT_C = RIGHT_C_Value();
  const int32_t RIGHT_H = RIGHT_H_Value();
  const int32_t RIGHT_W = RIGHT_W_Value();

  const int32_t OFM_N = std::max(LEFT_N, RIGHT_N);
  const int32_t OFM_C = std::max(LEFT_C, RIGHT_C);
  const int32_t OFM_H = std::max(LEFT_H, RIGHT_H);
  const int32_t OFM_W = std::max(LEFT_W, RIGHT_W);

  // Initialize random number generator
  std::minstd_rand random(SEED);

  std::cout << "Configurations:" << std::endl;
#define PRINT_NEWLINE()     \
  {                         \
    std::cout << std::endl; \
  }
#define PRINT_VALUE(value)                                       \
  {                                                              \
    std::cout << "  " << #value << ": " << (value) << std::endl; \
  }
  PRINT_VALUE(SEED);
  PRINT_NEWLINE();

  PRINT_VALUE(LEFT_N);
  PRINT_VALUE(LEFT_H);
  PRINT_VALUE(LEFT_W);
  PRINT_VALUE(LEFT_C);
  PRINT_NEWLINE();

  PRINT_VALUE(RIGHT_N);
  PRINT_VALUE(RIGHT_H);
  PRINT_VALUE(RIGHT_W);
  PRINT_VALUE(RIGHT_C);
  PRINT_NEWLINE();

  PRINT_VALUE(OFM_N);
  PRINT_VALUE(OFM_H);
  PRINT_VALUE(OFM_W);
  PRINT_VALUE(OFM_C);
#undef PRINT_VALUE
#undef PRINT_NEWLINE

  // Configure left data
  const uint32_t left_size = LEFT_N * LEFT_C * LEFT_H * LEFT_W;
  const uint32_t right_size = RIGHT_N * RIGHT_C * RIGHT_H * RIGHT_W;
  float left_data[left_size] = {
      0.0f,
  };
  float right_data[right_size] = {
      0.0f,
  };

  // Fill left data with random data
  {
    std::normal_distribution<float> left_dist(-1.0f, +1.0f);
    float value = 10.0f;
    for (uint32_t off = 0; off < left_size; ++off)
    {
      left_data[off] = value;
    }
    value = 1.0f;
    for (uint32_t off = 0; off < right_size; ++off)
    {
      right_data[off] = value++;
    }
  }

  auto setup = [&](Interpreter &interp) {
    // Comment from 'context.h'
    //
    // Parameters for asymmetric quantization. Quantized values can be converted
    // back to float using:
    //    real_value = scale * (quantized_value - zero_point);
    //
    // Q: Is this necessary?
    TfLiteQuantizationParams quantization = make_default_quantization();

    // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N)
    interp.AddTensors(3);

    // Configure output
    interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "output" /* name */,
                                        {OFM_N, OFM_H, OFM_W, OFM_C} /* dims */, quantization);

    // Configure input(s)
    interp.SetTensorParametersReadOnly(
        1, kTfLiteFloat32 /* type */, "left" /* name */, {LEFT_W, LEFT_C} /* dims */, quantization,
        reinterpret_cast<const char *>(left_data), left_size * sizeof(float));

    // Configure input(s)
    interp.SetTensorParametersReadOnly(2, kTfLiteFloat32 /* type */, "right" /* name */,
                                       {RIGHT_N, RIGHT_H, RIGHT_W, RIGHT_C} /* dims */,
                                       quantization, reinterpret_cast<const char *>(right_data),
                                       right_size * sizeof(float));

    // Add Convolution Node
    //
    // NOTE AddNodeWithParameters take the ownership of param, and deallocate it with free
    //      So, param should be allocated with malloc
    auto param = make_alloc<TfLiteAddParams>();

    param->activation = kTfLiteActNone;

    // Run Add and store the result into Tensor #0
    //  - Read LHS from Tensor #1
    //  - Read RHS from Tensor #2,
    interp.AddNodeWithParameters({1, 2}, {0}, nullptr, 0, reinterpret_cast<void *>(param),
                                 BuiltinOpResolver().FindOp(BuiltinOperator_ADD, 1));

    interp.SetInputs({});
    interp.SetOutputs({0});
  };

  const nnfw::support::tflite::interp::FunctionBuilder builder(setup);

  RandomTestParam param;

  param.verbose = verbose;
  param.tolerance = tolerance;

  int res = RandomTestRunner{SEED, param}.run(builder);

  EXPECT_EQ(res, 0);
}