summaryrefslogtreecommitdiff
path: root/runtimes/pure_arm_compute/src/internal/layers/SimpleSpaceToBatchND.cc
blob: f53675b992d849817fe0a85a59d13270226637be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "internal/layers/SimpleSpaceToBatchND.h"

#include <arm_compute/runtime/CL/CLScheduler.h>

void SimpleSpaceToBatchND::configure(::arm_compute::ITensor *input,
                                     ::arm_compute::ITensor *block_size,
                                     ::arm_compute::ITensor *padding_size,
                                     ::arm_compute::ITensor *output)
{
  const auto rank = input->info()->num_dimensions();
  assert(rank == 4);

  _input = input;
  _block_size = block_size;
  _padding_size = padding_size;
  _output = output;
}

template <typename T>
inline void
SpaceToBatchND(const ::arm_compute::ITensor *input, const ::arm_compute::TensorShape &input_shape,
               const ::arm_compute::ITensor *block_size, const ::arm_compute::ITensor *padding_size,
               const ::arm_compute::ITensor *output, const ::arm_compute::TensorShape &output_shape,
               T zero_value)
{
  const int input_batch = input_shape[3];
  const int input_height = input_shape[1];
  const int input_width = input_shape[0];

  const int depth = output_shape[2];

  const int padding_height_left = *reinterpret_cast<int *>(padding_size->ptr_to_element({0, 1}));
  const int padding_height_right = *reinterpret_cast<int *>(padding_size->ptr_to_element({1, 1}));
  const int padding_width_left = *reinterpret_cast<int *>(padding_size->ptr_to_element({0, 0}));
  const int padding_width_right = *reinterpret_cast<int *>(padding_size->ptr_to_element({1, 0}));
  const int padded_height = input_height + padding_height_left + padding_height_right;
  const int padded_width = input_width + padding_width_left + padding_width_right;

  const int block_size_height = *reinterpret_cast<int *>(block_size->ptr_to_element({1}));
  const int block_size_width = *reinterpret_cast<int *>(block_size->ptr_to_element({0}));

  assert(padding_height_left >= 0);
  assert(padding_height_right >= 0);
  assert(padding_width_left >= 0);
  assert(padding_width_right >= 0);
  assert(block_size_height >= 1);
  assert(block_size_width >= 1);
  assert(padded_height % block_size_height == 0);
  assert(padded_width % block_size_width == 0);
  assert(output->info()->dimension(3) ==
         input->info()->dimension(3) * (block_size_height * block_size_width));

  for (int in_b = 0; in_b < input_batch; ++in_b)
  {
    for (int in_d = 0; in_d < depth; ++in_d)
    {
      for (int in_h = 0; in_h < padded_height; ++in_h)
      {
        for (int in_w = 0; in_w < padded_width; ++in_w)
        {
          const int out_d = in_d;
          const int out_h = in_h / block_size_height;
          const int out_w = in_w / block_size_width;
          const int out_b =
              in_b +
              ((in_h % block_size_height) * block_size_width + in_w % block_size_width) *
                  input_batch;

          const ::arm_compute::Coordinates output_id{out_w, out_h, out_d, out_b};

          if (in_h < padding_height_left || in_h >= (input_height + padding_height_left) ||
              in_w < padding_width_left || in_w >= (input_width + padding_width_left))
          {
            *reinterpret_cast<T *>(output->ptr_to_element(output_id)) = zero_value;
          }
          else
          {
            const ::arm_compute::Coordinates input_id{in_w - padding_width_left,
                                                      in_h - padding_height_left, in_d, in_b};
            *reinterpret_cast<T *>(output->ptr_to_element(output_id)) =
                *reinterpret_cast<T *>(input->ptr_to_element(input_id));
          }
        }
      }
    }
  }
}
void SimpleSpaceToBatchND::run()
{
  if (::internal::arm_compute::isGpuMode())
  {
    auto &q = ::arm_compute::CLScheduler::get().queue();

    CAST_CL(_input)->map(q);
    CAST_CL(_block_size)->map(q);
    CAST_CL(_padding_size)->map(q);
    CAST_CL(_output)->map(q);
  }

  switch (_input->info()->data_type())
  {
    case ::arm_compute::DataType::U8:
    case ::arm_compute::DataType::QASYMM8:
      SpaceToBatchND<uint8_t>(_input, _input->info()->tensor_shape(), _block_size, _padding_size,
                              _output, _output->info()->tensor_shape(),
                              _input->info()->quantization_info().offset);
      break;
    case ::arm_compute::DataType::F32:
      SpaceToBatchND<float>(_input, _input->info()->tensor_shape(), _block_size, _padding_size,
                            _output, _output->info()->tensor_shape(), 0.0f);
      break;
    default:
      ARM_COMPUTE_ERROR("DataType not supported");
      break;
  }

  if (::internal::arm_compute::isGpuMode())
  {
    auto &q = ::arm_compute::CLScheduler::get().queue();

    CAST_CL(_input)->unmap(q);
    CAST_CL(_block_size)->unmap(q);
    CAST_CL(_padding_size)->unmap(q);
    CAST_CL(_output)->unmap(q);
  }
}