summaryrefslogtreecommitdiff
path: root/runtimes/pure_arm_compute/src/internal/layers/SimplePadLayer.cc
blob: 64236603f87fcef842da74c9510403acf90c53fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "internal/layers/SimplePadLayer.h"
#include <arm_compute/runtime/CL/CLScheduler.h>

namespace
{
bool validate_arg(const ::arm_compute::ITensor *input, const ::arm_compute::ITensor *output,
                  const ::arm_compute::ITensor *padding_size,
                  const ::arm_compute::Coordinates &axises)
{
  const int input_batch = input->info()->tensor_shape()[axises[0]];
  const int input_height = input->info()->tensor_shape()[axises[1]];
  const int input_width = input->info()->tensor_shape()[axises[2]];
  const int input_depth = input->info()->tensor_shape()[axises[3]];

  const int output_batch = output->info()->tensor_shape()[axises[0]];
  const int output_height = output->info()->tensor_shape()[axises[1]];
  const int output_width = output->info()->tensor_shape()[axises[2]];
  const int output_depth = output->info()->tensor_shape()[axises[3]];

  auto pad_batch_up = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 0}));
  auto pad_batch_down = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({1, 0}));
  auto pad_height_top = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 1}));
  auto pad_height_bottom = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({1, 1}));
  auto pad_width_left = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 2}));
  auto pad_width_right = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({1, 2}));
  auto pad_depth_front = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 3}));
  auto pad_depth_back = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({1, 3}));

  const int padded_batch = input_batch + pad_batch_up + pad_batch_down;
  const int padded_height = input_height + pad_height_top + pad_height_bottom;
  const int padded_width = input_width + pad_width_left + pad_width_right;
  const int padded_depth = input_depth + pad_depth_front + pad_depth_back;

  return (padded_batch == output_batch) && (padded_height == output_height) &&
         (padded_width == output_width) && (padded_depth == output_depth);
}
} // namespace

void SimplePadLayer::configure(::arm_compute::ITensor *input, ::arm_compute::ITensor *output,
                               ::arm_compute::ITensor *padding_size,
                               const ::arm_compute::Coordinates &axises)
{

  const auto rank = axises.num_dimensions();
  assert(rank == 4);
  assert(input != nullptr && output != nullptr && padding_size != nullptr);

  for (int i = 0; i < rank; ++i)
  {
    assert(axises[i] >= 0);
    assert(axises[i] < rank);
  }

  _input = input;
  _output = output;
  _padding_size = padding_size;
  _axises = axises;
}

template <typename T>
inline void ApplyPadding(const ::arm_compute::ITensor *input_data,
                         const ::arm_compute::TensorShape &input_shape,
                         const ::arm_compute::ITensor *padding_size,
                         ::arm_compute::ITensor *output_data,
                         const ::arm_compute::TensorShape &output_shape,
                         const ::arm_compute::Coordinates &axises, T zero_value)
{

  assert(validate_arg(input_data, output_data, padding_size, axises) &&
         "Padded Input shape does not match to output shape");

  const int input_batch = input_shape[axises[0]];
  const int input_height = input_shape[axises[1]];
  const int input_width = input_shape[axises[2]];
  const int input_depth = input_shape[axises[3]];

  const int output_batch = output_shape[axises[0]];
  const int output_height = output_shape[axises[1]];
  const int output_width = output_shape[axises[2]];
  const int output_depth = output_shape[axises[3]];

  // Padding size for Up, Top, Left and Front are required.
  auto pad_batch_up = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 0}));
  auto pad_height_top = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 1}));
  auto pad_width_left = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 2}));
  auto pad_depth_front = *reinterpret_cast<const int32_t *>(padding_size->ptr_to_element({0, 3}));

  for (int out_b = 0; out_b < output_batch; ++out_b)
  {
    for (int out_h = 0; out_h < output_height; ++out_h)
    {
      for (int out_w = 0; out_w < output_width; ++out_w)
      {
        for (int out_d = 0; out_d < output_depth; ++out_d)
        {
          auto output_id = asARMComputeCoordinates(
              ::arm_compute::Coordinates{out_b, out_h, out_w, out_d}, axises);

          if (out_b < pad_batch_up || out_b >= (input_batch + pad_batch_up) ||
              out_h < pad_height_top || out_h >= (input_height + pad_height_top) ||
              out_w < pad_width_left || out_w >= (input_width + pad_width_left) ||
              out_d < pad_depth_front || out_d >= (input_depth + pad_depth_front))
          {
            *reinterpret_cast<T *>(output_data->ptr_to_element(output_id)) = zero_value;
          }
          else
          {
            auto input_id = asARMComputeCoordinates(
                ::arm_compute::Coordinates{out_b - pad_batch_up, out_h - pad_height_top,
                                           out_w - pad_width_left, out_d - pad_depth_front},
                axises);
            *reinterpret_cast<T *>(output_data->ptr_to_element(output_id)) =
                *reinterpret_cast<T *>(input_data->ptr_to_element(input_id));
          }
        }
      }
    }
  }
}
void SimplePadLayer::run()
{
  if (::internal::arm_compute::isGpuMode())
  {
    auto &q = ::arm_compute::CLScheduler::get().queue();

    CAST_CL(_input)->map(q);
    CAST_CL(_output)->map(q);
    CAST_CL(_padding_size)->map(q);
  }

  switch (_input->info()->data_type())
  {
    case ::arm_compute::DataType::U8:
    case ::arm_compute::DataType::QASYMM8:
      ApplyPadding<uint8_t>(_input, _input->info()->tensor_shape(), _padding_size, _output,
                            _output->info()->tensor_shape(), _axises,
                            _input->info()->quantization_info().offset);
      break;
    case ::arm_compute::DataType::F32:
      ApplyPadding<float>(_input, _input->info()->tensor_shape(), _padding_size, _output,
                          _output->info()->tensor_shape(), _axises, 0.0f);
      break;
    default:
      ARM_COMPUTE_ERROR("DataType not supported");
      break;
  }

  if (::internal::arm_compute::isGpuMode())
  {
    auto &q = ::arm_compute::CLScheduler::get().queue();

    CAST_CL(_input)->unmap(q);
    CAST_CL(_output)->unmap(q);
    CAST_CL(_padding_size)->unmap(q);
  }
}