summaryrefslogtreecommitdiff
path: root/runtimes/nn/common/operations/internal/tensor_utils.h
blob: df3d4e27b5ceb5a22549dd123e52353448dc64ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __NNFW_RT_TENSOR_UTILS_H__
#define __NNFW_RT_TENSOR_UTILS_H__

#include "ActivationFunctor.h"

namespace nnfw {
namespace rt {
namespace tensor_utils {

// Limit a float input f betweeen +abs_limit and -abs_limit.
float Clip(float f, float abs_limit);

// Multiply a matrix by a batch vector, and store results in a batch-size
// vector using a stride value provided in result_stride. 'result_stride' shows
// how the number of elements between consecutive result values. For example
// result_stride = 1, will cause the output to look like this:
// [O_1, 0_2, ... O_rows] in memory, but result_stride = 3, will cause it to be
// arranged like this in memory: [O_1, x, x, 0_2, x, x, ..., O_rows]
void MatrixBatchVectorMultiplyAccumulate(const float* matrix, int m_rows,
                                         int m_cols, const float* vector,
                                         int n_batch, float* result,
                                         int result_stride);

// Cwise product of two vectors.
void VectorVectorCwiseProduct(const float* vector1, const float* vector2,
                              int v_size, float* result);

// Cwise product and accumulate of two vectors. Since it's a MAC opertation, the
// assumption here is that result array is initialized to valid values.
void VectorVectorCwiseProductAccumulate(const float* vector1,
                                        const float* vector2, int v_size,
                                        float* result);

// Dot product of two vectors.
float VectorVectorDotProduct(const float* vector1, const float* vector2,
                             int v_size);

// Dot product of two batch vectors of size n_batch * v_size:
// vector1 = [x_1_1, x_1_2, ..., x_1_vsize,
//            x_2_1, x_2_2, ..., x_2_vsize,
//            ...
//            x_nbatch_1,..., x_nbatch_vsize]
// vector2 = [y_1_1, y_1_2, ..., y_1_vsize,
//            y_2_1, y_2_2, ..., y_2_vsize,
//            ...
//            y_nbatch_1,..., y_nbatch_vsize]
// Then result will be a vector of n_batch size which will be saved with a
// stride of result_stride in memory starting from 'result':
// [x_1_1 * y_1_1 + x_1_2 * y_1_2 + ... + x_1_vsize * y_1_vsize,
//  x_2_1 * y_2_1 + x_2_2 * y_2_2 + ... + x_2_vsize * y_2_vsize,
//  ...
//  x_nbatch_1 * y_nbatch_1 + ... + x_nbatch_vsize * y_nbatch_vsize]
void BatchVectorBatchVectorDotProduct(const float* vector1,
                                      const float* vector2, int v_size,
                                      int n_batch, float* result,
                                      int result_stride);

// Cwise product and accumulate of a vector and a batch-vector. Since it's a MAC
// operation, the assumption here is that result array is initialized to valid
// values.
void VectorBatchVectorCwiseProductAccumulate(const float* vector, int v_size,
                                             const float* batch_vector,
                                             int n_batch, float* result);

// Batch vector initialization with another vector.
void VectorBatchVectorAssign(const float* vector, int v_size, int n_batch,
                             float* batch_vector);

// Apply sigmoid to elements of a vector.
void ApplySigmoidToVector(const float* vector, int v_size, float* result);

// Apply activation function to elements of a vector.
void ApplyActivationToVector(const float* vector, int v_size,
                             ActivationFn activation, float* result);

// Copy vector to another vector.
void CopyVector(const float* vector, int v_size, float* result);

// Compute "1.0f - elements of vector" (used in CIFG).
void Sub1Vector(const float* vector, int v_size, float* result);

// Fill vector with 0.f.
void ZeroVector(float* vector, int v_size);

// Clip elements of a vector using a abs_limit value.
void ClipVector(const float* vector, int v_size, float abs_limit,
                float* result);

// Shift left a vector in place with v_size size.
void VectorShiftLeft(float* vector, int v_size, float shift_value);

// Reduce-sum on a float input vector:
// input_vector: float pointer to input vector.
// input_stride: input vector stride.
// output_vector: float pointer to vector.
// output_size: output vector size.
// reduction_size: number of consecutive elements from input vector which are
// added to get one element of output.
void ReductionSumVector(const float* input_vector, int input_stride,
                        float* output_vector, int output_size,
                        int reduction_size);
}  // namespace tensor_utils
}  // namespace rt
}  // namespace nnfw

#endif  // __NNFW_RT_TENSOR_UTILS_H__