summaryrefslogtreecommitdiff
path: root/runtimes/neurun/frontend/nnapi/wrapper/ANeuralNetworksExecution.cc
blob: ee621e31d3d9cf56622ada4c5e72be65415c30ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ANeuralNetworksExecution.h"
#include "NNAPIConvert.h"
#include "util/logging.h"

const neurun::model::OperandIndex
ANeuralNetworksExecution::getInputOperandIndex(int32_t index) noexcept
{
  if (index < 0)
  {
    // Negative index: return invalid index
    return neurun::model::OperandIndex{};
  }

  uint32_t cast_index = static_cast<uint32_t>(index);
  if (cast_index >= _execution->model().inputs.size())
  {
    // Return invalid index
    return neurun::model::OperandIndex{};
  }

  neurun::model::IOIndex input_index{cast_index};
  const auto operand_index = _execution->model().inputs.at(input_index);
  return operand_index;
}

const neurun::model::OperandIndex
ANeuralNetworksExecution::getOutputOperandIndex(int32_t index) noexcept
{
  if (index < 0)
  {
    // Negative index: return invalid index
    return neurun::model::OperandIndex{};
  }

  uint32_t cast_index = static_cast<uint32_t>(index);
  if (cast_index >= _execution->model().outputs.size())
  {
    // Return invalid index
    return neurun::model::OperandIndex{};
  }

  neurun::model::IOIndex output_index{cast_index};
  const auto operand_index = _execution->model().outputs.at(output_index);
  return operand_index;
}

bool ANeuralNetworksExecution::compareDataType(const ANeuralNetworksOperandType *type,
                                               const neurun::model::OperandIndex index) noexcept
{
  try
  {
    const auto operand_type = _execution->model().operands.at(index).typeInfo();
    const auto typeInfo = NNAPIConvert::getTypeInfo(type);

    if (operand_type != typeInfo)
    {
      // Data type mismatch
      return false;
    }
  }
  catch (const std::exception &e)
  {
    VERBOSE(EXCEPTION) << e.what() << std::endl;

    return false;
  }

  return true;
}

bool ANeuralNetworksExecution::compareShape(const ANeuralNetworksOperandType *type,
                                            const neurun::model::OperandIndex index) noexcept
{
  // Passed shape should be specified
  if (haveUnspecifiedDims(index))
  {
    return false;
  }

  const auto &operand_shape = _execution->model().operands.at(index).shape();
  const auto &shape_from_type = NNAPIConvert::getShape(type);

  return operand_shape == shape_from_type;
}

bool ANeuralNetworksExecution::haveUnspecifiedDims(const neurun::model::OperandIndex index) noexcept
{
  const auto operand_shape = _execution->model().operands.at(index).shape();

  return operand_shape.num_elements() == 0;
}

size_t ANeuralNetworksExecution::getOperandSize(const neurun::model::OperandIndex index) noexcept
{
  try
  {
    return _execution->model().operands.at(index).operandSize();
  }
  catch (const std::exception &e)
  {
    VERBOSE(EXCEPTION) << e.what() << std::endl;

    return 0;
  }
}

bool ANeuralNetworksExecution::setInput(uint32_t index, const ANeuralNetworksOperandType *type,
                                        const void *buffer, size_t length) noexcept
{
  try
  {
    neurun::model::IOIndex input_index{index};
    const auto operand_index = getInputOperandIndex(index);

    const auto type_info = _execution->model().operands.at(operand_index).typeInfo();
    const auto shape = ((type != nullptr) ? NNAPIConvert::getShape(type)
                                          : _execution->model().operands.at(operand_index).shape());

    _execution->setInput(input_index, type_info, shape, buffer, length);
  }
  catch (const std::exception &e)
  {
    VERBOSE(EXCEPTION) << e.what() << std::endl;

    return false;
  }

  return true;
}

bool ANeuralNetworksExecution::setOutput(uint32_t index, const ANeuralNetworksOperandType *type,
                                         void *buffer, size_t length) noexcept
{
  try
  {
    neurun::model::IOIndex output_index{index};
    const auto operand_index = getOutputOperandIndex(index);

    const auto type_info = _execution->model().operands.at(operand_index).typeInfo();
    const auto shape = ((type != nullptr) ? NNAPIConvert::getShape(type)
                                          : _execution->model().operands.at(operand_index).shape());

    _execution->setOutput(output_index, type_info, shape, buffer, length);
  }
  catch (const std::exception &e)
  {
    VERBOSE(EXCEPTION) << e.what() << std::endl;

    return false;
  }

  return true;
}

bool ANeuralNetworksExecution::startExecute(void) noexcept
{
  try
  {
    _execution->startExecute();
  }
  catch (const std::exception &e)
  {
    VERBOSE(EXCEPTION) << e.what() << std::endl;

    return false;
  }

  return true;
}

const std::shared_ptr<neurun::exec::Execution> ANeuralNetworksExecution::instance(void) noexcept
{
  return _execution;
}