summaryrefslogtreecommitdiff
path: root/runtimes/neurun/backend/cpu/kernel/OperationUtils.cc
blob: 40b7ef3d6c6af522876520ca124ba08727a45483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "OperationUtils.h"

#include <cmath>
#include <algorithm>
#include <cassert>

namespace neurun
{
namespace backend
{
namespace cpu
{
namespace kernel
{

uint32_t getNumberOfDimensions(const Shape &shape) { return shape.dimensions.size(); }

uint32_t getNumberOfElements(const Shape &shape)
{
  uint32_t count = 1;
  for (size_t i = 0; i < shape.dimensions.size(); i++)
  {
    count *= shape.dimensions[i];
  }
  return count;
}

uint32_t getSizeOfDimension(const Shape &shape, uint32_t dimensionIdx)
{
  if (dimensionIdx >= shape.dimensions.size())
  {
    // TODO, log the error
    return 0;
  }
  return shape.dimensions[dimensionIdx];
}

void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift)
{
  if (double_multiplier == 0.)
  {
    *quantized_multiplier = 0;
    *shift = 0;
    return;
  }
  const double q = std::frexp(double_multiplier, shift);
  auto q_fixed = static_cast<int64_t>(std::round(q * (1ll << 31)));

  assert(q_fixed <= (1ll << 31));
  if (q_fixed == (1ll << 31))
  {
    q_fixed /= 2;
    ++*shift;
  }
  assert(q_fixed <= std::numeric_limits<int32_t>::max());
  *quantized_multiplier = static_cast<int32_t>(q_fixed);
}

void GetQuantizedConvolutionMultiplier(const Shape &inputShape, const Shape &filterShape,
                                       const Shape &biasShape, const Shape &outputShape,
                                       float *multiplier)
{
  const float input_product_scale = inputShape.scale * filterShape.scale;
  const float bias_scale = biasShape.scale;
  const float output_scale = outputShape.scale;
  // The following conditions must be guaranteed by the training pipeline.
  UNUSED_RELEASE(bias_scale);
  assert(std::abs(input_product_scale - bias_scale) <=
         1e-6 * std::min(input_product_scale, bias_scale));
  assert(input_product_scale >= 0);
  assert(input_product_scale < output_scale);
  *multiplier = input_product_scale / output_scale;
}

void QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t *quantized_multiplier,
                                      int *left_shift)
{
  assert(double_multiplier > 1.);
  const double q = std::frexp(double_multiplier, left_shift);
  int64_t q_fixed = static_cast<int64_t>(std::round(q * (1ll << 31)));
  assert(q_fixed <= (1ll << 31));
  if (q_fixed == (1ll << 31))
  {
    q_fixed /= 2;
    ++*left_shift;
  }
  assert(*left_shift >= 0);
  assert(q_fixed <= std::numeric_limits<int32_t>::max());
  *quantized_multiplier = static_cast<int32_t>(q_fixed);
}

void CalculateActivationRangeFloat(model::Activation activation, float *activation_min,
                                   float *activation_max)
{
  if (activation == model::Activation::RELU)
  {
    *activation_min = 0.f;
    *activation_max = std::numeric_limits<float>::max();
  }
  else if (activation == model::Activation::RELU6)
  {
    *activation_min = 0.f;
    *activation_max = 6.f;
  }
  else if (activation == model::Activation::RELU1)
  {
    *activation_min = -1.f;
    *activation_max = 1.f;
  }
  else if (activation == model::Activation::NONE)
  {
    *activation_min = std::numeric_limits<float>::lowest();
    *activation_max = std::numeric_limits<float>::max();
  }
  else
  {
    std::cout << "Unsupported fused activation function." << std::endl;
  }
}

void CalculateActivationRangeUint8(model::Activation activation, const Shape &outputShape,
                                   int32_t *act_min, int32_t *act_max)
{
  const int32_t qmin = std::numeric_limits<uint8_t>::min();
  const int32_t qmax = std::numeric_limits<uint8_t>::max();
  const auto scale = outputShape.scale;
  const auto zero_point = outputShape.offset;
  auto quantize = [scale, zero_point](float f) {
    return zero_point + static_cast<int32_t>(std::round(f / scale));
  };
  if (activation == model::Activation::RELU)
  {
    *act_min = std::max(qmin, quantize(0.0));
    *act_max = qmax;
  }
  else if (activation == model::Activation::RELU6)
  {
    *act_min = std::max(qmin, quantize(0.0));
    *act_max = std::min(qmax, quantize(6.0));
  }
  else if (activation == model::Activation::RELU1)
  {
    *act_min = std::max(qmin, quantize(-1.0));
    *act_max = std::min(qmax, quantize(1.0));
  }
  else if (activation == model::Activation::NONE)
  {
    *act_min = qmin;
    *act_max = qmax;
  }
  else
  {
    std::cout << "Unsupported fused activation function." << std::endl;
  }
}

int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift)
{
  const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) *
                                    (1ll << (31 - input_integer_bits)) / (1ll << input_left_shift);
  // Tighten bound using floor.  Suppose that we could use the exact value.
  // After scaling the difference, the result would be at the maximum.  Thus we
  // must ensure that our value has lower magnitude.
  return static_cast<int32_t>(std::floor(max_input_rescaled));
}

Shape getShape(const ::neurun::model::Operand &o, ::neurun::model::Layout frontend_layout)
{
  Shape shape;

  auto dims = o.shape().dims();
  if (frontend_layout == ::neurun::model::Layout::NCHW && o.shape().rank() == 4)
  {
    // NCHW -> NHWC
    uint32_t permutation[4] = {0, 2, 3, 1};
    for (int i = 0; i < o.shape().rank(); ++i)
    {
      dims.at(i) = o.shape().dim(permutation[i]);
    }
  }
  shape.dimensions = std::vector<uint32_t>(dims.begin(), dims.end());
  shape.type = static_cast<OperandType>(static_cast<int32_t>(o.typeInfo().type()));
  shape.scale = o.typeInfo().scale();
  shape.offset = o.typeInfo().offset();

  // CPU backend assume that neurun internal shape's rank is always same or less than 4
  assert(shape.dimensions.size() <= 4);

  return shape;
}

uint32_t sizeOfData(OperandType type, const std::vector<uint32_t> &dimensions)
{
  uint32_t size = 4;

  switch (type)
  {
    case OperandType::FLOAT32:
    case OperandType::INT32:
    case OperandType::UINT32:
      size = 4;
      break;
    case OperandType::BOOL8:
    case OperandType::QUANT8_ASYMM:
      size = 1;
      break;
    default:
      throw std::runtime_error("Not supported operand type.");
      break;
  }

  for (auto d : dimensions)
  {
    size *= d;
  }

  return size;
}

} // namespace kernel
} // namespace cpu
} // namespace backend
} // namespace neurun