summaryrefslogtreecommitdiff
path: root/runtimes/neurun/backend/cpu/kernel/ConvolutionLayer.cc
blob: efeabbbaebfc785bae5fac38f4c091316df0aa99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ConvolutionLayer.h"

#include <cker/operation/Conv.h>

#include "OperationUtils.h"

namespace neurun
{
namespace backend
{
namespace cpu
{
namespace kernel
{
ConvolutionLayer::ConvolutionLayer()
    : _inputData(), _kernelData(), _outputData(), _biasData(), _inputShape(), _kernelShape(),
      _outputShape(), _biasShape(), _paddingLeft(0), _paddingTop(0), _paddingRight(0),
      _paddingBottom(0), _strideWidth(0), _strideHeight(0), _activation(model::Activation::NONE),
      _inputType(OperandType::FLOAT32)
{
  // DO NOTHING
}

void ConvolutionLayer::convFloat32()
{
  float output_activation_min, output_activation_max;
  CalculateActivationRangeFloat(_activation, &output_activation_min, &output_activation_max);

  nnfw::cker::ConvParams op_params;
  op_params.padding_values.width = _paddingLeft;
  op_params.padding_values.height = _paddingTop;
  op_params.stride_width = _strideWidth;
  op_params.stride_height = _strideHeight;
  op_params.dilation_width_factor = 1;
  op_params.dilation_height_factor = 1;
  op_params.float_activation_min = output_activation_min;
  op_params.float_activation_max = output_activation_max;

  nnfw::cker::Conv(op_params, convertShapeToCkerShape(_inputShape), _inputData.f,
                   convertShapeToCkerShape(_kernelShape), _kernelData.f,
                   convertShapeToCkerShape(_biasShape), _biasData.f,
                   convertShapeToCkerShape(_outputShape), _outputData.f);
}

void ConvolutionLayer::convQuant8()
{
  int32_t output_activation_min = 0;
  int32_t output_activation_max = 0;
  CalculateActivationRangeUint8(_activation, _outputShape, &output_activation_min,
                                &output_activation_max);

  float real_multiplier = 0.0;
  int32_t output_multiplier = 0;
  int32_t output_shift = 0;
  GetQuantizedConvolutionMultiplier(_inputShape, _kernelShape, _biasShape, _outputShape,
                                    &real_multiplier);
  QuantizeMultiplier(real_multiplier, &output_multiplier, &output_shift);

  nnfw::cker::ConvParams op_params;
  op_params.stride_width = _strideWidth;
  op_params.stride_height = _strideHeight;
  op_params.dilation_width_factor = 1;
  op_params.dilation_height_factor = 1;
  op_params.padding_values.width = _paddingLeft;
  op_params.padding_values.height = _paddingTop;
  op_params.input_offset = -_inputShape.offset;
  op_params.weights_offset = -_kernelShape.offset;
  op_params.output_offset = _outputShape.offset;
  op_params.output_multiplier = output_multiplier;
  op_params.output_shift = output_shift;
  op_params.quantized_activation_min = output_activation_min;
  op_params.quantized_activation_max = output_activation_max;

  nnfw::cker::Conv(op_params, convertShapeToCkerShape(_inputShape), _inputData.u8,
                   convertShapeToCkerShape(_kernelShape), _kernelData.u8,
                   convertShapeToCkerShape(_biasShape), _biasData.i32,
                   convertShapeToCkerShape(_outputShape), _outputData.u8);
}

void ConvolutionLayer::configure(uint8_t *inputData, const Shape inputShape, uint8_t *kernelData,
                                 const Shape kernelShape, uint8_t *biasData, const Shape biasShape,
                                 const uint32_t paddingLeft, const uint32_t paddingRight,
                                 const uint32_t paddingTop, const uint32_t paddingBottom,
                                 const uint32_t strideWidth, const uint32_t strideHeight,
                                 const model::Activation activation, uint8_t *outputData,
                                 const Shape outputShape)
{
  _inputData.u8 = inputData;
  _inputShape = inputShape;
  _inputType = inputShape.type;
  _kernelData.u8 = kernelData;
  _kernelShape = kernelShape;
  _biasData.u8 = biasData;
  _biasShape = biasShape;
  _paddingLeft = paddingLeft;
  _paddingRight = paddingRight;
  _paddingTop = paddingTop;
  _paddingBottom = paddingBottom;
  _strideWidth = strideWidth;
  _strideHeight = strideHeight;
  _activation = activation;
  _outputData.u8 = outputData;
  _outputShape = outputShape;
}

void ConvolutionLayer::run()
{
  if (_inputType == OperandType::FLOAT32)
  {
    convFloat32();
  }
  else if (_inputType == OperandType::QUANT8_ASYMM)
  {
    convQuant8();
  }
}

#undef ANDROID_NN_CONV_PARAMETERS

} // namespace kernel
} // namespace cpu
} // namespace backend
} // namespace neurun