summaryrefslogtreecommitdiff
path: root/runtimes/libs/ARMComputeEx/src/core/NEON/NEElementwiseOperationFuncs.cpp
blob: 4508f5800cb3e2ca5c7defd93f7ada395293ad73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright (c) 2016-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/core/NEON/NEElementwiseOperationFuncs.h"

#include <algorithm>
#include "arm_compute/core/Types.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Window.h"

namespace
{
void store_quantized_int32(uint8_t *output_ptr, const int32x4x4_t &out)
{
  const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
  const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
  vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}

using namespace arm_compute;
template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
void elementwise_op_templ(
    const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
    OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
    int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &,
                          OutputScalarType *, const bool),
    int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *,
                     OutputScalarType *))
{
  // Create input windows
  Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
  Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

  // Clear X Dimension on execution window as we handle manually
  Window win = window;
  win.set(Window::DimX, Window::Dimension(0, 1, 1));

  const int window_step_x = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
  const auto window_start_x = static_cast<int>(window.x().start());
  const auto window_end_x = static_cast<int>(window.x().end());
  const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

  if (is_broadcast_across_x)
  {
    const bool is_broadcast_input_2 = input2_win.x().step() == 0;
    Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
    Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
    const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
    const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

    // Clear X Dimension on execution window as we handle manually
    non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator broadcast_input(broadcast_tensor, broadcast_win);
    Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
    Iterator output(out, win);

    execute_window_loop(win,
                        [&](const Coordinates &) {
                          auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
                          const auto non_broadcast_input_ptr =
                              reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
                          const InputScalarType broadcast_value =
                              *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());

                          int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x,
                                                    non_broadcast_input_ptr, broadcast_value,
                                                    output_ptr, !is_broadcast_input_2);
                          for (; x < window_end_x; ++x)
                          {
                            const auto a = *(non_broadcast_input_ptr + x);
                            *(output_ptr + x) =
                                (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a,
                                               !is_broadcast_input_2 ? a : broadcast_value);
                          }
                        },
                        broadcast_input, non_broadcast_input, output);
  }
  else
  {
    // Clear X Dimension on execution window as we handle manually
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    execute_window_loop(win,
                        [&](const Coordinates &) {
                          auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
                          const auto input1_ptr =
                              reinterpret_cast<const InputScalarType *>(input1.ptr());
                          const auto input2_ptr =
                              reinterpret_cast<const InputScalarType *>(input2.ptr());

                          int x = (*neon_func)(window_start_x, window_end_x, window_step_x,
                                               input1_ptr, input2_ptr, output_ptr);
                          for (; x < window_end_x; ++x)
                          {
                            const auto a = *(input1_ptr + x);
                            const auto b = *(input2_ptr + x);
                            *(output_ptr + x) = (*scalar_func)(a, b);
                          }
                        },
                        input1, input2, output);
  }
}

} // namespace

namespace arm_compute
{

float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset,
                             const float32x4_t &scale)
{
  qasymm8x16_t x = vld1q_u8(input1_ptr);
  const float32x4x4_t out = {{
      vmulq_f32(
          vcvtq_f32_s32(vsubq_s32(
              vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)),
          scale),
      vmulq_f32(
          vcvtq_f32_s32(vsubq_s32(
              vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)),
          scale),
      vmulq_f32(
          vcvtq_f32_s32(vsubq_s32(
              vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)),
          scale),
      vmulq_f32(
          vcvtq_f32_s32(vsubq_s32(
              vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)),
          scale),
  }};
  return out;
}

void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset,
                     const float32x4_t &invscale)
{
  int32x4x4_t out = {{
      vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
      vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
      vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
      vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
  }};
  store_quantized_int32(output_ptr, out);
}

float32x4x4_t dup_quantized(uint8_t broadcast_value, int offset, float scale)
{
  const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value);
  const int32x4_t voffset = vdupq_n_s32(offset);
  const float32x4_t vscale = vdupq_n_f32(scale);

  const float32x4x4_t broadcast_vector = {{
      vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(
                                            vmovl_u8(vget_low_u8(broadcast_value_vec))))),
                                        voffset)),
                vscale),
      vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(
                                            vmovl_u8(vget_low_u8(broadcast_value_vec))))),
                                        voffset)),
                vscale),
      vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(
                                            vmovl_u8(vget_high_u8(broadcast_value_vec))))),
                                        voffset)),
                vscale),
      vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(
                                            vmovl_u8(vget_high_u8(broadcast_value_vec))))),
                                        voffset)),
                vscale),
  }};
  return broadcast_vector;
}

void elementwise_op_quantized(
    const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
    uint8_t (*scalar_func)(const float &, const float &, QuantizationInfo),
    int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t,
                          float32x4_t, float32x4_t, float32x4_t, const bool),
    int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *, int32x4_t,
                     int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t))
{
  // Create input windows
  Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
  Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

  // Clear X Dimension on execution window as we handle manually
  Window win = window;
  win.set(Window::DimX, Window::Dimension(0, 1, 1));

  const int window_step_x = 16;
  const auto window_start_x = static_cast<int>(window.x().start());
  const auto window_end_x = static_cast<int>(window.x().end());
  const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

  const float output_scale = out->info()->quantization_info().scale;
  const int output_offset = out->info()->quantization_info().offset;

  // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from
  // zero)
  const float32x4_t voffseto = vdupq_n_f32(output_offset + 0.5f);
  const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_scale);

  if (is_broadcast_across_x)
  {
    // Select the broadcast input on the X axis
    const bool is_broadcast_input_2 = input2_win.x().step() == 0;
    Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
    Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
    const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
    const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

    const QuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info();
    const QuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info();

    const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
    const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);

    // Clear X Dimension on execution window as we handle manually
    non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator broadcast_input(broadcast_tensor, broadcast_win);
    Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
    Iterator output(out, win);

    execute_window_loop(
        win,
        [&](const Coordinates &) {
          const auto non_broadcast_input_ptr =
              reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
          const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

          const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
          const float32x4x4_t broadcast_vector =
              dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale);

          int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x,
                                    non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                    voffset_non_broadcast, vscale_non_broadcast, voffseto,
                                    invvscaleo, !is_broadcast_input_2);
          for (; x < window_end_x; ++x)
          {
            const float afs =
                scvt_f32_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo.scale,
                                 non_broadcast_qinfo.offset);
            const float bfs =
                scvt_f32_qasymm8(broadcast_value, broadcast_qinfo.scale, broadcast_qinfo.offset);
            *(output_ptr + x) =
                (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs,
                               out->info()->quantization_info());
          }
        },
        broadcast_input, non_broadcast_input, output);
  }
  else
  {
    // Input1 quantization info
    const int32x4_t voffset1 = vdupq_n_s32(in1->info()->quantization_info().offset);
    const float32x4_t vscale1 = vdupq_n_f32(in1->info()->quantization_info().scale);

    // Input2 quantization info
    const int32x4_t voffset2 = vdupq_n_s32(in2->info()->quantization_info().offset);
    const float32x4_t vscale2 = vdupq_n_f32(in2->info()->quantization_info().scale);

    // Clear X Dimension on execution window as we handle manually
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const QuantizationInfo input1_qinfo = in1->info()->quantization_info();
    const QuantizationInfo input2_qinfo = in2->info()->quantization_info();

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    execute_window_loop(
        win,
        [&](const Coordinates &) {
          const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
          const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
          const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

          int x =
              (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr,
                           output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo);
          for (; x < window_end_x; ++x)
          {
            const float afs =
                scvt_f32_qasymm8(*(input1_ptr + x), input1_qinfo.scale, input1_qinfo.offset);
            const float bfs =
                scvt_f32_qasymm8(*(input2_ptr + x), input2_qinfo.scale, input2_qinfo.offset);
            *(output_ptr + x) = (*scalar_func)(afs, bfs, out->info()->quantization_info());
          }
        },
        input1, input2, output);
  }
}

void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                    float (*scalar_func)(const float &, const float &),
                    int (*broadcast_func)(int, int, int, const float *, const float &, float *,
                                          const bool),
                    int (*neon_func)(int, int, int, const float *, const float *, float *))
{
  elementwise_op_templ<float, float, float32x4_t>(in1, in2, out, window, scalar_func,
                                                  broadcast_func, neon_func);
}

void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                    uint8_t (*scalar_func)(const uint8_t &, const uint8_t &),
                    int (*broadcast_func)(int, int, int, const uint8_t *, const uint8_t &,
                                          uint8_t *, const bool),
                    int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *))
{
  elementwise_op_templ<uint8_t, uint8_t, uint8x16_t>(in1, in2, out, window, scalar_func,
                                                     broadcast_func, neon_func);
}
} // namespace arm_compute