summaryrefslogtreecommitdiff
path: root/libs/tflite/src/ext/kernels/TensorFlowSum.cpp
blob: cbf97970c6649851c2c3d8178089c3795cc6a06e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "tflite/ext/kernels/TensorFlowSum.h"
#include "tensorflow/contrib/lite/kernels/kernel_util.h"

#include <iostream>

namespace nnfw
{
namespace tflite
{
namespace custom
{
namespace TensorFlowSum
{

struct TensorFlowSumOp
{
  TensorFlowSumOp(TfLiteContext *context, TfLiteNode *node)
  {
    input = ::tflite::GetInput(context, node, 0);
    axis = ::tflite::GetInput(context, node, 1);
    output = ::tflite::GetOutput(context, node, 0);
  }
  const TfLiteTensor *input;
  const TfLiteTensor *axis;
  TfLiteTensor *output;
};

void *InitTensorFlowSum(TfLiteContext *context, const char *buffer, size_t length)
{
  // Creates two temp tensors to store index and axis for internal
  // implementation only.
  auto *scratch_tensor_index = new int;
  context->AddTensors(context, 2, scratch_tensor_index);
  return scratch_tensor_index;
}

void FreeTensorFlowSum(TfLiteContext *context, void *buffer)
{
  delete static_cast<TensorFlowSumOp *>(buffer);
}

// Resizes the temp tensor that stores resolved axis.
TfLiteStatus ResizeTempAxis(TfLiteContext *context, TensorFlowSumOp *op_context,
                            TfLiteTensor *resolved_axis)
{
  TfLiteIntArray *axis_size = TfLiteIntArrayCreate(1);
  axis_size->data[0] = static_cast<int>(::tflite::NumElements(op_context->axis));
  return context->ResizeTensor(context, resolved_axis, axis_size);
}

// Resizes output array based on the input size and resolved axis.
TfLiteStatus ResizeOutputTensor(TfLiteContext *context, TensorFlowSumOp *op_context)
{
  size_t num_axis = ::tflite::NumElements(op_context->axis);
  TfLiteIntArray *input_dims = op_context->input->dims;
  int input_num_dims = ::tflite::NumDimensions(op_context->input);
  const int *axis = op_context->axis->data.i32;

  {
    // Calculates size of reducing axis.
    int num_reduce_axis = num_axis;
    for (int i = 0; i < num_axis; ++i)
    {
      int current = axis[i];
      if (current < 0)
      {
        current += input_num_dims;
      }
      TF_LITE_ENSURE(context, current >= 0 && current < input_num_dims);
      for (int j = 0; j < i; ++j)
      {
        int previous = axis[j];
        if (previous < 0)
        {
          previous += input_num_dims;
        }
        if (current == previous)
        {
          --num_reduce_axis;
          break;
        }
      }
    }
    // Determines output dimensions.
    int output_num_dims = ::tflite::NumDimensions(op_context->output);
    TF_LITE_ENSURE(context, (input_num_dims == output_num_dims) ||
                                (input_num_dims - num_reduce_axis == output_num_dims));

    if (input_num_dims == output_num_dims)
    {
      TfLiteIntArray *output_dims = TfLiteIntArrayCopy(input_dims);
      for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx)
      {
        int current = axis[axis_idx];
        output_dims->data[current] = 1;
      }
      return context->ResizeTensor(context, op_context->output, output_dims);
    }
    else
    {
      TfLiteIntArray *output_dims = TfLiteIntArrayCreate(output_num_dims);
      int num_skip_axis = 0;
      for (int idx = 0; idx < input_num_dims; ++idx)
      {
        bool is_axis = false;
        for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx)
        {
          if (axis[axis_idx] == idx || axis[axis_idx] + input_num_dims == idx)
          {
            ++num_skip_axis;
            is_axis = true;
            break;
          }
        }
        if (!is_axis)
        {
          output_dims->data[idx - num_skip_axis] = input_dims->data[idx];
        }
      }
      return context->ResizeTensor(context, op_context->output, output_dims);
    }
  }
}

// Initializes temp tensors to store index and resolved axis.
TfLiteStatus InitializeTemporaries(TfLiteContext *context, TfLiteNode *node,
                                   TensorFlowSumOp *op_context)
{
  // Creates a temp index to iterate through input data.
  int *scratch_tensor_index = reinterpret_cast<int *>(node->user_data);
  TfLiteIntArrayFree(node->temporaries);
  node->temporaries = TfLiteIntArrayCreate(2);
  node->temporaries->data[0] = *scratch_tensor_index;
  TfLiteTensor *scratch_tensor = &context->tensors[node->temporaries->data[0]];
  scratch_tensor->type = kTfLiteInt32;
  scratch_tensor->allocation_type = kTfLiteArenaRw;
  TfLiteIntArray *index_size = TfLiteIntArrayCreate(1);
  index_size->data[0] = ::tflite::NumDimensions(op_context->input);
  TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scratch_tensor, index_size));

  // Creates a temp tensor to store resolved axis given input data.
  node->temporaries->data[1] = *scratch_tensor_index + 1;
  TfLiteTensor *resolved_axis = &context->tensors[node->temporaries->data[1]];
  resolved_axis->type = kTfLiteInt32;
  return kTfLiteOk;
}

TfLiteStatus PrepareTensorFlowSum(TfLiteContext *context, TfLiteNode *node)
{
  TF_LITE_ENSURE_EQ(context, ::tflite::NumInputs(node), 2);
  TF_LITE_ENSURE_EQ(context, ::tflite::NumOutputs(node), 1);

  TensorFlowSumOp op_context(context, node);
  TF_LITE_ENSURE_OK(context, InitializeTemporaries(context, node, &op_context));

  TfLiteTensor *resolved_axis = &context->tensors[node->temporaries->data[1]];
  // Leaves work to Eval if axis is not constant; else resizes output.
  if (!::tflite::IsConstantTensor(op_context.axis))
  {
    ::tflite::SetTensorToDynamic(op_context.output);
    ::tflite::SetTensorToDynamic(resolved_axis);
    return kTfLiteOk;
  }
  resolved_axis->allocation_type = kTfLiteArenaRw;
  TF_LITE_ENSURE_OK(context, ResizeTempAxis(context, &op_context, resolved_axis));
  return ResizeOutputTensor(context, &op_context);
}

// Gets offset of index if expanded on axis. When expanded, the flattened offset
// will not change, if the output index changes on the given axis. For example,
// if you have a 2D tensor and you are expanding to 3D on axis 0,
// then index (0, 1, 2) and index (1, 1, 2) will map from the same flattened
// offset.
inline size_t ExpandedInputOffset(const int num_dims, const int *dims, const int *index,
                                  const int num_axis, const int *axis)
{
  size_t offset = 0;
  int out_idx = 0;
  for (int in_idx = 0; in_idx < num_dims; ++in_idx)
  {
    // if we need to expand this axis
    bool is_axis = false;
    if (axis != nullptr)
    {
      for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx)
      {
        if (in_idx == axis[axis_idx])
        {
          is_axis = true;
          break;
        }
      }
    }
    if (!is_axis)
    {
      offset = offset * static_cast<size_t>(dims[in_idx]) + static_cast<size_t>(index[out_idx]);
      out_idx++;
    }
    else
    {
      offset = offset * static_cast<size_t>(dims[in_idx]);
    }
  }
  return offset;
}

// Gets offset of index if reducing on axis. When reducing, the flattened offset
// will not change, if the input index changes on the given axis. For example,
// if you have a 3D tensor and you are reducing to 2D by eliminating axis 0,
// then index (0, 1, 2) and index (1, 1, 2) will map to the same flattened
// offset.
// TODO(kanlig): uses Dims to represent dimensions.
inline size_t ReducedOutputOffset(const int num_dims, const int *dims, const int *index,
                                  const int num_axis, const int *axis)
{
  size_t offset = 0;
  for (int idx = 0; idx < num_dims; ++idx)
  {
    // if we need to skip this axis
    bool is_axis = false;
    if (axis != nullptr)
    {
      for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx)
      {
        if (idx == axis[axis_idx])
        {
          is_axis = true;
          break;
        }
      }
    }
    if (!is_axis)
    {
      offset = offset * static_cast<size_t>(dims[idx]) + static_cast<size_t>(index[idx]);
    }
  }
  return offset;
}

// Gets next index to iterate through a multidimensional array.
inline bool NextIndex(TfLiteContext *context, const int num_dims, const int *dims, int *current)
{
  int carry = 1;
  for (int idx = num_dims - 1; idx >= 0; --idx)
  {
    int current_val = current[idx] + carry;
    TF_LITE_ENSURE(context, (dims[idx] >= current_val));
    if (dims[idx] == current_val)
    {
      current[idx] = 0;
    }
    else
    {
      current[idx] = current_val;
      carry = 0;
      break;
    }
  }
  return (carry == 0);
}

template <typename T>
inline TfLiteStatus
CustomSum(TfLiteContext *context, T *input_data, const int *input_dims, const int input_num_dims,
          T *output_data, const int *output_dims, const int output_num_dims, const int *axis,
          const int num_axis_dimensions, bool keep_dims, int *temp_index, int *resolved_axis)
{
  // resolves axis.
  int num_resolved_axis = 0;
  for (int idx = 0; idx < num_axis_dimensions; ++idx)
  {
    int current = axis[idx];
    TF_LITE_ENSURE(context, (current < input_num_dims && current + input_num_dims >= 0));
    if (current < 0)
    {
      current += input_num_dims;
    }
    bool is_dup = false;
    for (int j = 0; j < num_resolved_axis; ++j)
    {
      if (resolved_axis[j] == current)
      {
        is_dup = true;
        break;
      }
    }
    if (!is_dup)
    {
      resolved_axis[num_resolved_axis++] = current;
    }
  }

  TF_LITE_ENSURE(context, (input_num_dims > 0));
  TF_LITE_ENSURE(context, (input_dims != nullptr));
  TF_LITE_ENSURE(context, (temp_index != nullptr));

  // resets output data.
  for (int idx = 0; idx < output_num_dims; ++idx)
  {
    temp_index[idx] = 0;
  }
  for (bool has_next = true; has_next;
       has_next = NextIndex(context, output_num_dims, output_dims, temp_index))
  {
    size_t output_offset =
        ReducedOutputOffset(output_num_dims, output_dims, temp_index, 0, nullptr);
    output_data[output_offset] = 0;
  }

  // resets temp index.
  for (int idx = 0; idx < input_num_dims; ++idx)
  {
    temp_index[idx] = 0;
  }

  // iterates through input_data.
  for (bool has_next = true; has_next;
       has_next = NextIndex(context, input_num_dims, input_dims, temp_index))
  {
    size_t input_offset = ReducedOutputOffset(input_num_dims, input_dims, temp_index, 0, nullptr);
    size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims, temp_index,
                                               num_resolved_axis, resolved_axis);
    output_data[output_offset] += input_data[input_offset];
  }

  return kTfLiteOk;
}

TfLiteStatus EvalTensorFlowSum(TfLiteContext *context, TfLiteNode *node)
{

  TensorFlowSumOp op_context(context, node);
  int num_axis = static_cast<int>(::tflite::NumElements(op_context.axis));
  TfLiteTensor *temp_index = &context->tensors[node->temporaries->data[0]];
  TfLiteTensor *resolved_axis = &context->tensors[node->temporaries->data[1]];
  // Resize the output tensor if the output tensor is dynamic.
  if (::tflite::IsDynamicTensor(op_context.output))
  {
    TF_LITE_ENSURE_OK(context, ResizeTempAxis(context, &op_context, resolved_axis));
    TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
  }

  TfLiteStatus returnStatus = kTfLiteOk;
  switch (op_context.input->type)
  {
    case kTfLiteFloat32:
      returnStatus = CustomSum<float>(
          context, op_context.input->data.f, op_context.input->dims->data,
          op_context.input->dims->size, op_context.output->data.f, op_context.output->dims->data,
          op_context.output->dims->size, op_context.axis->data.i32, num_axis, false,
          temp_index->data.i32, resolved_axis->data.i32);
      break;
    case kTfLiteInt32:
      returnStatus = CustomSum<int>(context, op_context.input->data.i32,
                                    op_context.input->dims->data, op_context.input->dims->size,
                                    op_context.output->data.i32, op_context.output->dims->data,
                                    op_context.output->dims->size, op_context.axis->data.i32,
                                    num_axis, false, temp_index->data.i32, resolved_axis->data.i32);
      break;
    case kTfLiteUInt8:
      returnStatus = CustomSum<uint8_t>(
          context, op_context.input->data.uint8, op_context.input->dims->data,
          op_context.input->dims->size, op_context.output->data.uint8,
          op_context.output->dims->data, op_context.output->dims->size, op_context.axis->data.i32,
          num_axis, false, temp_index->data.i32, resolved_axis->data.i32);
      break;
    case kTfLiteInt64:
      returnStatus = CustomSum<int64_t>(
          context, op_context.input->data.i64, op_context.input->dims->data,
          op_context.input->dims->size, op_context.output->data.i64, op_context.output->dims->data,
          op_context.output->dims->size, op_context.axis->data.i32, num_axis, false,
          temp_index->data.i32, resolved_axis->data.i32);
      break;
    default:
      returnStatus = kTfLiteError;
  }

  return returnStatus;
}

} // namespace TensorFlowSum
} // namespace custom
} // namespace tflite
} // namespace nnfw