summaryrefslogtreecommitdiff
path: root/libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp
blob: b985aa73749ecbbfe85a0450ab3b1175c52d1557 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright (c) 2016-2018 ARM Limited.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "arm_compute/core/CL/kernels/CLPixelWiseDivisionKernel.h"

#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibraryEx.h"
#include "arm_compute/core/CL/ICLTensor.h"

using namespace arm_compute;

namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;

Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2,
                          const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
                          RoundingPolicy rounding_policy)
{
  ARM_COMPUTE_UNUSED(overflow_policy);
  ARM_COMPUTE_UNUSED(rounding_policy);

  ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::S16,
                                                       DataType::F16, DataType::F32);
  ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::S16,
                                                       DataType::F16, DataType::F32);
  ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative.");

  const TensorShape &out_shape =
      TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());

  ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0,
                                  "Inputs are not broadcast compatible");

  // Validate in case of configured output
  if (output->total_size() > 0)
  {
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16,
                                                         DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(
        output->data_type() == DataType::U8 &&
            (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
        "Output can only be U8 if both inputs are U8");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(
        detail::have_different_dimensions(out_shape, output->tensor_shape(), 0),
        "Wrong shape for output");
  }

  return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2,
                                                        ITensorInfo *output)
{
  const std::pair<TensorShape, ValidRegion> broadcast_pair =
      ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
  const TensorShape &out_shape = broadcast_pair.first;
  const ValidRegion &valid_region = broadcast_pair.second;

  // Auto initialize output if not initialized
  {
    set_shape_if_empty(*output, out_shape);

    if (input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
    {
      set_format_if_unknown(*output, Format::S16);
    }
    else if (input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
    {
      set_format_if_unknown(*output, Format::F32);
    }
  }

  Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
  Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
  Window win_input2 = win.broadcast_if_dimension_le_one(*input2);

  AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
  AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
  AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);

  bool window_changed = update_window_and_padding(win_input1, input1_access) ||
                        update_window_and_padding(win_input2, input2_access) ||
                        update_window_and_padding(win, output_access);

  output_access.set_valid_region(win, valid_region);

  Status err = (window_changed)
                   ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!")
                   : Status{};
  return std::make_pair(err, win);
}
} // namespace

CLPixelWiseDivisionKernel::CLPixelWiseDivisionKernel()
    : _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}

void CLPixelWiseDivisionKernel::configure(const ICLTensor *input1, const ICLTensor *input2,
                                          ICLTensor *output, float scale,
                                          ConvertPolicy overflow_policy,
                                          RoundingPolicy rounding_policy)
{
  ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(),
                                                scale, overflow_policy, rounding_policy));

  // Configure kernel window
  auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
  ARM_COMPUTE_ERROR_THROW_ON(win_config.first);

  _input1 = input1;
  _input2 = input2;
  _output = output;

  int scale_int = -1;
  // Extract sign, exponent and mantissa
  int exponent = 0;
  float normalized_mantissa = std::frexp(scale, &exponent);
  // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
  // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <=
  // 14
  // Moreover, it will be negative as we deal with 1/2^n
  if ((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
  {
    // Store the positive exponent. We know that we compute 1/2^n
    // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
    scale_int = std::abs(exponent - 1);
  }

  std::string data_type;
  std::string compute_type;
  // Check if it has float inputs and output
  if (is_data_type_float(input1->info()->data_type()) ||
      is_data_type_float(input2->info()->data_type()))
  {
    scale_int = -1;
    compute_type = (input1->info()->data_type() == DataType::F32 ||
                    input2->info()->data_type() == DataType::F32)
                       ? "float"
                       : "half";
    data_type = "DATA_TYPE_FLOAT";
  }
  else
  {
    if (input1->info()->data_type() == DataType::S16 ||
        input2->info()->data_type() == DataType::S16)
    {
      compute_type = "int";
    }
    else
    {
      compute_type = "ushort";
    }
    data_type = "DATA_TYPE_INT";
  }

  // Construct kernel name
  std::string kernel_name = "pixelwise_div";
  kernel_name += (scale_int >= 0) ? "_int" : "_float";

  // Set kernel build options
  std::set<std::string> build_opts;
  build_opts.emplace(
      (overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->info()->data_type()))
          ? "-DWRAP"
          : "-DSATURATE");
  build_opts.emplace((rounding_policy == RoundingPolicy::TO_ZERO) ? "-DROUND=_rtz"
                                                                  : "-DROUND=_rte");
  build_opts.emplace("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->info()->data_type()));
  build_opts.emplace("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->info()->data_type()));
  build_opts.emplace("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type()));
  build_opts.emplace("-DDATA_TYPE_RES=" + compute_type);
  build_opts.emplace("-D" + data_type);

  // Create kernel
  _kernel =
      static_cast<cl::Kernel>(CLKernelLibraryEx::get().create_kernel(kernel_name, build_opts));

  // Set scale argument
  unsigned int idx = 3 * num_arguments_per_3D_tensor(); // Skip the inputs and output parameters

  if (scale_int >= 0)
  {
    _kernel.setArg(idx++, scale_int);
  }
  else
  {
    _kernel.setArg(idx++, scale);
  }

  ICLKernel::configure_internal(win_config.second);
}

Status CLPixelWiseDivisionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2,
                                           const ITensorInfo *output, float scale,
                                           ConvertPolicy overflow_policy,
                                           RoundingPolicy rounding_policy)
{
  ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
  ARM_COMPUTE_RETURN_ON_ERROR(
      validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
  ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(),
                                                            input2->clone().get(),
                                                            output->clone().get())
                                  .first);

  return Status{};
}

void CLPixelWiseDivisionKernel::run(const Window &window, cl::CommandQueue &queue)
{
  ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
  ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);

  const TensorShape &in_shape1 = _input1->info()->tensor_shape();
  const TensorShape &in_shape2 = _input2->info()->tensor_shape();
  const TensorShape &out_shape = _output->info()->tensor_shape();

  bool can_collapse = true;
  if (std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
  {
    can_collapse =
        (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
    for (size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
    {
      can_collapse = (in_shape1[d] == in_shape2[d]);
    }
  }

  bool has_collapsed = false;
  Window collapsed =
      can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed)
                   : window;

  const TensorShape &in_shape1_collapsed =
      has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
  const TensorShape &in_shape2_collapsed =
      has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;

  Window slice = collapsed.first_slice_window_3D();
  Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
  Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);

  do
  {
    unsigned int idx = 0;
    add_3D_tensor_argument(idx, _input1, slice_input1);
    add_3D_tensor_argument(idx, _input2, slice_input2);
    add_3D_tensor_argument(idx, _output, slice);
    enqueue(queue, *this, slice);

    collapsed.slide_window_slice_3D(slice_input1);
    collapsed.slide_window_slice_3D(slice_input2);
  } while (collapsed.slide_window_slice_3D(slice));
}

BorderSize CLPixelWiseDivisionKernel::border_size() const
{
  const unsigned int replicateSize =
      _output->info()->dimension(0) -
      std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
  const unsigned int border =
      std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
  return BorderSize(0, border, 0, 0);
}