summaryrefslogtreecommitdiff
path: root/contrib/labs/kerneltesting/conv2d/optimized_ops.h
blob: 1d8c4ff28dbfd63a0b9473c6419f80a4a9d6325c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_
#define ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_

// Make a local VectorMap typedef allowing to map a float array
// as a Eigen matrix expression. The same explanation as for VectorMap
// above also applies here.
template <typename Scalar>
using MatrixMap = typename std::conditional<
    std::is_const<Scalar>::value,
    Eigen::Map<const Eigen::Matrix<typename std::remove_const<Scalar>::type,
                                   Eigen::Dynamic, Eigen::Dynamic>>,
    Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>>>::type;

template <typename Scalar, int N>
MatrixMap<Scalar> MapAsMatrixWithFirstDimAsRows(Scalar* data,
                                                const Dims<N>& dims) {
  const int rows = dims.sizes[0];
  int cols = 1;
  for (int d = 1; d < N; d++) {
    cols *= dims.sizes[d];
  }
  return MatrixMap<Scalar>(data, rows, cols);
}

template <typename Scalar, int N>
MatrixMap<Scalar> MapAsMatrixWithLastDimAsCols(Scalar* data,
                                               const Dims<N>& dims) {
  const int cols = dims.sizes[N - 1];
  int rows = 1;
  for (int d = 0; d < N - 1; d++) {
    rows *= dims.sizes[d];
  }
  return MatrixMap<Scalar>(data, rows, cols);
}

template <typename T>
inline void ExtractPatchIntoBufferColumn(
    const Dims<4>& input_dims, int w, int h, int b, int kheight, int kwidth,
    int stride_width, int stride_height, int pad_width, int pad_height,
    int in_width, int in_height, int in_depth, int single_buffer_length,
    int buffer_id, const T* in_data, T* conv_buffer_data, uint8 byte_zero) {
  gemmlowp::ScopedProfilingLabel label("ExtractPatchIntoBufferColumn");
  // This chunk of code reshapes all the inputs corresponding to
  // output (b, h, w) to a column vector in conv_buffer(:, buffer_id).
  const int kwidth_times_indepth = kwidth * in_depth;
  const int inwidth_times_indepth = in_width * in_depth;
  const int ih_ungated_start = h * stride_height - pad_height;
  const int ih_ungated_end = (ih_ungated_start + kheight);
  const int ih_end = std::min(ih_ungated_end, in_height);
  const int iw_ungated_start = w * stride_width - pad_width;
  const int iw_ungated_end = (iw_ungated_start + kwidth);
  const int iw_end = std::min(iw_ungated_end, in_width);
  // If the patch is off the edge of the input image, skip writing those rows
  // and columns from the patch into the output array.
  const int h_offset = std::max(0, -ih_ungated_start);
  const int w_offset = std::max(0, -iw_ungated_start);
  const int ih_start = std::max(0, ih_ungated_start);
  const int iw_start = std::max(0, iw_ungated_start);
  const int single_row_num =
      std::min(kwidth - w_offset, in_width - iw_start) * in_depth;
  const int output_row_offset = (buffer_id * single_buffer_length);
  int out_offset =
      output_row_offset + (h_offset * kwidth + w_offset) * in_depth;
  int in_offset = Offset(input_dims, 0, iw_start, ih_start, b);

  // Express all of the calculations as padding around the input patch.
  const int top_padding = h_offset;
  const int bottom_padding = (ih_ungated_end - ih_end);
  const int left_padding = w_offset;
  const int right_padding = (iw_ungated_end - iw_end);
  assert(single_row_num ==
         ((kwidth - (left_padding + right_padding)) * in_depth));

  // Write out zeroes to the elements representing the top rows of the input
  // patch that are off the edge of the input image.
  if (top_padding > 0) {
    const int top_row_elements = (top_padding * kwidth * in_depth);
    memset(conv_buffer_data + output_row_offset, byte_zero,
           (top_row_elements * sizeof(T)));
  }

  // If the patch is on the interior of the input image horizontally, just copy
  // over the rows sequentially, otherwise add zero padding at the start or end.
  if ((left_padding == 0) && (right_padding == 0)) {
    for (int ih = ih_start; ih < ih_end; ++ih) {
      memcpy(conv_buffer_data + out_offset, in_data + in_offset,
             single_row_num * sizeof(T));
      out_offset += kwidth_times_indepth;
      in_offset += inwidth_times_indepth;
    }
  } else {
    for (int ih = ih_start; ih < ih_end; ++ih) {
      if (left_padding > 0) {
        const int left_start = (out_offset - (left_padding * in_depth));
        memset(conv_buffer_data + left_start, byte_zero,
               (left_padding * in_depth * sizeof(T)));
      }
      memcpy(conv_buffer_data + out_offset, in_data + in_offset,
             single_row_num * sizeof(T));
      if (right_padding > 0) {
        const int right_start = (out_offset + single_row_num);
        memset(conv_buffer_data + right_start, byte_zero,
               (right_padding * in_depth * sizeof(T)));
      }
      out_offset += kwidth_times_indepth;
      in_offset += inwidth_times_indepth;
    }
  }

  // If the bottom of the patch falls off the input image, pad the values
  // representing those input rows with zeroes.
  if (bottom_padding > 0) {
    const int bottom_row_elements = (bottom_padding * kwidth * in_depth);
    const int bottom_start =
        output_row_offset +
        ((top_padding + (ih_end - ih_start)) * kwidth * in_depth);
    memset(conv_buffer_data + bottom_start, byte_zero,
           (bottom_row_elements * sizeof(T)));
  }
}

#ifdef USE_NEON
template <FusedActivationFunctionType Ac>
void AddBiasAndEvalActivationFunction(const float* bias_data,
                                      const Dims<4>& bias_dims,
                                      float* array_data,
                                      const Dims<4>& array_dims) {
  gemmlowp::ScopedProfilingLabel label("AddBiasAndEvalActivationFunction");
  const int bias_size = bias_dims.sizes[3] * bias_dims.strides[3];
  const int array_size = array_dims.sizes[3] * array_dims.strides[3];
  DCHECK_EQ((array_size % bias_size), 0);
  float* array_ptr = array_data;
  float* array_end_ptr = array_ptr + array_size;
  const auto zero = vdupq_n_f32(0);
  const auto six = vdupq_n_f32(6);
  const auto neg_one = vdupq_n_f32(-1);
  const auto one = vdupq_n_f32(1);
  for (; array_ptr != array_end_ptr; array_ptr += bias_size) {
    int i = 0;
    for (; i <= bias_size - 16; i += 16) {
      auto b0 = vld1q_f32(bias_data + i);
      auto b1 = vld1q_f32(bias_data + i + 4);
      auto b2 = vld1q_f32(bias_data + i + 8);
      auto b3 = vld1q_f32(bias_data + i + 12);
      auto a0 = vld1q_f32(array_ptr + i);
      auto a1 = vld1q_f32(array_ptr + i + 4);
      auto a2 = vld1q_f32(array_ptr + i + 8);
      auto a3 = vld1q_f32(array_ptr + i + 12);
      auto x0 = vaddq_f32(a0, b0);
      auto x1 = vaddq_f32(a1, b1);
      auto x2 = vaddq_f32(a2, b2);
      auto x3 = vaddq_f32(a3, b3);
      if (Ac == FusedActivationFunctionType::kRelu ||
          Ac == FusedActivationFunctionType::kRelu6) {
        x0 = vmaxq_f32(zero, x0);
        x1 = vmaxq_f32(zero, x1);
        x2 = vmaxq_f32(zero, x2);
        x3 = vmaxq_f32(zero, x3);
        if (Ac == FusedActivationFunctionType::kRelu6) {
          x0 = vminq_f32(six, x0);
          x1 = vminq_f32(six, x1);
          x2 = vminq_f32(six, x2);
          x3 = vminq_f32(six, x3);
        }
      } else if (Ac == FusedActivationFunctionType::kRelu1) {
        x0 = vmaxq_f32(neg_one, x0);
        x1 = vmaxq_f32(neg_one, x1);
        x2 = vmaxq_f32(neg_one, x2);
        x3 = vmaxq_f32(neg_one, x3);
        x0 = vminq_f32(one, x0);
        x1 = vminq_f32(one, x1);
        x2 = vminq_f32(one, x2);
        x3 = vminq_f32(one, x3);
      }
      vst1q_f32(array_ptr + i, x0);
      vst1q_f32(array_ptr + i + 4, x1);
      vst1q_f32(array_ptr + i + 8, x2);
      vst1q_f32(array_ptr + i + 12, x3);
    }
    for (; i <= bias_size - 4; i += 4) {
      auto b = vld1q_f32(bias_data + i);
      auto a = vld1q_f32(array_ptr + i);
      auto x = vaddq_f32(a, b);
      if (Ac == FusedActivationFunctionType::kRelu ||
          Ac == FusedActivationFunctionType::kRelu6) {
        x = vmaxq_f32(zero, x);
        if (Ac == FusedActivationFunctionType::kRelu6) {
          x = vminq_f32(six, x);
        }
      } else if (Ac == FusedActivationFunctionType::kRelu1) {
        x = vmaxq_f32(neg_one, x);
        x = vminq_f32(one, x);
      }
      vst1q_f32(array_ptr + i, x);
    }
    for (; i < bias_size; i++) {
      array_ptr[i] = ActivationFunction<Ac>(array_ptr[i] + bias_data[i]);
    }
  }
}
#else  // not NEON
template <FusedActivationFunctionType Ac>
void AddBiasAndEvalActivationFunction(const float* bias_data,
                                      const Dims<4>& bias_dims,
                                      float* array_data,
                                      const Dims<4>& array_dims) {
  gemmlowp::ScopedProfilingLabel label("AddBiasAndEvalActivationFunction");
  const int bias_size = bias_dims.sizes[3] * bias_dims.strides[3];
  const int array_size = array_dims.sizes[3] * array_dims.strides[3];
  DCHECK_EQ((array_size % bias_size), 0);
  for (int array_offset = 0; array_offset < array_size;
       array_offset += bias_size) {
    for (int i = 0; i < bias_size; i++) {
      array_data[array_offset + i] =
          ActivationFunction<Ac>(array_data[array_offset + i] + bias_data[i]);
    }
  }
}
#endif

template <typename Lhs, typename Rhs, typename Result>
void Gemm(const Eigen::MatrixBase<Lhs>& lhs, const Eigen::MatrixBase<Rhs>& rhs,
          Eigen::MatrixBase<Result>* result) {
  if (rhs.cols() == 1) {
    gemmlowp::ScopedProfilingLabel label("GEMV");
    result->col(0).noalias() = lhs * rhs.col(0);
  } else {
    gemmlowp::ScopedProfilingLabel label("GEMM");
    result->noalias() = lhs * rhs;
  }
}

template <typename T>
void Im2col(const T* input_data, const Dims<4>& input_dims, int stride_width,
            int stride_height, int pad_width, int pad_height, int kheight,
            int kwidth, uint8 byte_zero, T* output_data,
            const Dims<4>& output_dims) {
  gemmlowp::ScopedProfilingLabel label("Im2col");
  DCHECK(IsPackedWithoutStrides(input_dims));
  DCHECK(IsPackedWithoutStrides(output_dims));
  const int batches = MatchingArraySize(input_dims, 3, output_dims, 3);
  const int input_depth = ArraySize(input_dims, 0);
  const int input_width = ArraySize(input_dims, 1);
  const int input_height = ArraySize(input_dims, 2);
  const int output_depth = ArraySize(output_dims, 0);
  const int output_width = ArraySize(output_dims, 1);
  const int output_height = ArraySize(output_dims, 2);

  int buffer_id = 0;
  // Loop over the output nodes.
  for (int b = 0; b < batches; ++b) {
    for (int h = 0; h < output_height; ++h) {
      for (int w = 0; w < output_width; ++w) {
        ExtractPatchIntoBufferColumn(
            input_dims, w, h, b, kheight, kwidth, stride_width, stride_height,
            pad_width, pad_height, input_width, input_height, input_depth,
            output_depth, buffer_id, input_data, output_data, byte_zero);
        ++buffer_id;
      }
    }
  }
}

template <FusedActivationFunctionType Ac>
void Conv(const float* input_data, const Dims<4>& input_dims,
          const float* filter_data, const Dims<4>& filter_dims,
          const float* bias_data, const Dims<4>& bias_dims, int stride_width,
          int stride_height, int pad_width, int pad_height, float* output_data,
          const Dims<4>& output_dims, float* im2col_data,
          const Dims<4>& im2col_dims) {
  (void)im2col_data;
  (void)im2col_dims;
  gemmlowp::ScopedProfilingLabel label("Conv");

  const float* gemm_input_data = nullptr;
  const Dims<4>* gemm_input_dims = nullptr;
  const int filter_width = ArraySize(filter_dims, 1);
  const int filter_height = ArraySize(filter_dims, 2);
  const bool need_im2col = stride_width != 1 || stride_height != 1 ||
                           filter_width != 1 || filter_height != 1;
  if (need_im2col) {
    DCHECK(im2col_data);
    Im2col(input_data, input_dims, stride_width, stride_height, pad_width,
           pad_height, filter_height, filter_width, 0, im2col_data,
           im2col_dims);
    gemm_input_data = im2col_data;
    gemm_input_dims = &im2col_dims;
  } else {
    DCHECK(!im2col_data);
    gemm_input_data = input_data;
    gemm_input_dims = &input_dims;
  }

  const auto im2col_matrix_map =
      MapAsMatrixWithFirstDimAsRows(gemm_input_data, *gemm_input_dims);
  const auto filter_matrix_map =
      MapAsMatrixWithLastDimAsCols(filter_data, filter_dims);
  auto output_matrix_map =
      MapAsMatrixWithFirstDimAsRows(output_data, output_dims);

  Gemm(filter_matrix_map.transpose(), im2col_matrix_map, &output_matrix_map);

  AddBiasAndEvalActivationFunction<Ac>(bias_data, bias_dims, output_data,
                                       output_dims);
}

#endif  // ANDROID_ML_NN_COMMON_OPERATIONS_INTERNAL_OPTIMIZED_OPS_H_