summaryrefslogtreecommitdiff
path: root/compute/cker/include/cker/gemmlowp/FixedPoint.h
blob: 159e01a221b32e76a116c762e1f0395f6c3d9563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
 * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef __NNFW_CKER_GEMMLOWP_FIXED_POINT_H__
#define __NNFW_CKER_GEMMLOWP_FIXED_POINT_H__

#include <algorithm>
#include <cassert>

namespace nnfw
{
namespace cker
{
namespace gemmlowp
{

inline int32_t RoundingHalfSum(int32_t a, int32_t b)
{
  int64_t a64 = a;
  int64_t b64 = b;
  int64_t sum = a64 + b64;
  int64_t sign = sum >= 0 ? 1 : -1;
  return static_cast<int32_t>((sum + sign) / 2);
}

inline int32_t SaturatingRoundingDoublingHighMul(int32_t a, int32_t b)
{
  bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
  int64_t a_64(a);
  int64_t b_64(b);
  int64_t ab_64 = a_64 * b_64;
  int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
  int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
  return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}

// Correctly-rounded-to-nearest division by a power-of-two.
// Also known as a rounding arithmetic right shift.
inline int32_t RoundingDivideByPOT(int32_t x, int exponent)
{
  assert(exponent >= 0);
  assert(exponent <= 31);
  const int32_t mask = ((1ll << exponent) - 1);
  const int32_t zero = 0;
  const int32_t one = 1;
  const int32_t remainder = x & mask;
  const int32_t threshold = (mask >> 1) + ((x < zero) ? one : zero);
  return ((x >> exponent) + ((remainder > threshold) ? one : zero));
}

// Returns the product of a run-time integer value by a compile-time power
// of two, with either a positive exponent (equivalent to an arithmetic
// left shift, saturating) or a negative exponent (equivalent to an arithmetic
// right shift, rounding to nearest).
template <int Exponent, int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)>
struct ImplSaturatingRoundingMultiplyByPOT
{
};

template <int Exponent> struct ImplSaturatingRoundingMultiplyByPOT<Exponent, 0>
{
  static int32_t eval(int32_t x) { return x; }
};

template <int Exponent> struct ImplSaturatingRoundingMultiplyByPOT<Exponent, 1>
{
  static int32_t eval(int32_t x)
  {
    const int32_t min = (std::numeric_limits<int32_t>::min());
    const int32_t max = (std::numeric_limits<int32_t>::max());
    const int32_t threshold = ((1 << (31 - Exponent)) - 1);
    const int32_t zero = 0;
    const int32_t one = 1;

    const int32_t positive_mask = ((x > threshold) ? ~zero : zero);
    const int32_t negative_mask = ((x < -threshold) ? ~zero : zero);

    int32_t result = (x * (one << Exponent));
    result = (positive_mask ? max : result);
    result = (negative_mask ? min : result);
    return result;
  }
};

template <int Exponent> struct ImplSaturatingRoundingMultiplyByPOT<Exponent, -1>
{
  static int32_t eval(int32_t x) { return RoundingDivideByPOT(x, -Exponent); }
};

template <int Exponent> int32_t SaturatingRoundingMultiplyByPOT(int32_t x)
{
  return ImplSaturatingRoundingMultiplyByPOT<Exponent>::eval(x);
}

template <int tIntegerBits> class FixedPoint
{
public:
  static constexpr int kTotalBits = 8 * sizeof(int32_t);
  static constexpr int kIntegerBits = tIntegerBits;
  static constexpr int kFractionalBits = kTotalBits - 1 - kIntegerBits;
  static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits, "bad IntegerBits");

  static int32_t ScalarRawMax() { return std::numeric_limits<int32_t>::max(); }

  static FixedPoint FromRaw(int32_t x)
  {
    FixedPoint retval;
    retval.raw() = x;
    return retval;
  }

  static FixedPoint FromScalarRaw(int32_t x) { return FromRaw(x); }

  template <int Exponent> static FixedPoint ConstantPOT()
  {
    static constexpr int kOffset = kFractionalBits + Exponent;
    static_assert(kOffset < 31, "Constant not exactly representable in this fixed-point format");
    return FromScalarRaw((int32_t)1 << kOffset);
  }

  static FixedPoint Zero() { return FromScalarRaw(0); }

  static FixedPoint One()
  {
    return FromScalarRaw(kIntegerBits == 0 ? ScalarRawMax() : ((int32_t)1 << kFractionalBits));
  }

  int32_t raw() const { return i_; }
  int32_t &raw() { return i_; }

private:
  int32_t i_;
};

// A FixedPoint multiplication is just a
// SaturatingRoundingDoublingHighMul operation on the underlying
// raw integer values. The IntegerBits simply add up, as is obvious
// from the fact that the range is [-2^IntegerBits, 2^IntegerBits).
template <int tIntegerBits_a, int tIntegerBits_b>
FixedPoint<tIntegerBits_a + tIntegerBits_b> operator*(FixedPoint<tIntegerBits_a> a,
                                                      FixedPoint<tIntegerBits_b> b)
{
  FixedPoint<tIntegerBits_a + tIntegerBits_b> c;
  c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw());
  return c;
}

// Tweaking IntegerBits gives exact multiplication by a power of two.
template <int tExponent, int tIntegerBits>
FixedPoint<tExponent + tIntegerBits> ExactMulByPot(FixedPoint<tIntegerBits> a)
{
  FixedPoint<tExponent + tIntegerBits> c;
  c.raw() = a.raw();
  return c;
}

template <int tIntegerBits>
FixedPoint<tIntegerBits> operator+(FixedPoint<tIntegerBits> a, FixedPoint<tIntegerBits> b)
{
  return FixedPoint<tIntegerBits>::FromRaw((a.raw() + b.raw()));
}
template <int tIntegerBits>
FixedPoint<tIntegerBits> operator-(FixedPoint<tIntegerBits> a, FixedPoint<tIntegerBits> b)
{
  return FixedPoint<tIntegerBits>::FromRaw((a.raw() - b.raw()));
}
template <int tIntegerBits>
FixedPoint<tIntegerBits> operator&(FixedPoint<tIntegerBits> a, FixedPoint<tIntegerBits> b)
{
  return FixedPoint<tIntegerBits>::FromRaw((a.raw() & b.raw()));
}

// Rescale changes the number of IntegerBits and updates the underlying
// raw integer value accordingly.
template <int tIntegerBitsDst, int tIntegerBitsSrc>
FixedPoint<tIntegerBitsDst> Rescale(FixedPoint<tIntegerBitsSrc> x)
{
  static constexpr int kExponent = tIntegerBitsSrc - tIntegerBitsDst;
  FixedPoint<tIntegerBitsDst> result;
  result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw());
  return result;
}

// Implementation of exponential function.

// Returns exp(x) for x in [-1/4, 0).
inline FixedPoint<0> exp_on_interval_between_negative_one_quarter_and_0_excl(FixedPoint<0> a)
{
  typedef FixedPoint<0> F;
  const F constant_term = F::FromScalarRaw(RoundingDivideByPOT(1895147668, 0));
  const F constant_1_over_3 = F::FromScalarRaw(RoundingDivideByPOT(715827883, 0));
  // We're evaluating a Taylor expansion around -1/8, so we do the change of
  // variable: x = a + 1/8.
  // In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28.
  F x = a + F::template ConstantPOT<-3>();
  F x2 = x * x;
  F x3 = x2 * x;
  F x4 = x2 * x2;
  F x4_over_4 = F::FromScalarRaw(SaturatingRoundingMultiplyByPOT<-2>(x4.raw()));
  F x4_over_24_plus_x3_over_6_plus_x2_over_2 = F::FromScalarRaw(
      SaturatingRoundingMultiplyByPOT<-1>((((x4_over_4 + x3) * constant_1_over_3) + x2).raw()));
  return (constant_term + constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2));
}

// Returns exp(x) for x < 0.
template <int tIntegerBits> FixedPoint<0> exp_on_negative_values(FixedPoint<tIntegerBits> a)
{
  typedef FixedPoint<tIntegerBits> InputF;
  typedef FixedPoint<0> ResultF;
  static constexpr int kFractionalBits = InputF::kFractionalBits;
  static constexpr int kIntegerBits = InputF::kIntegerBits;
  const InputF kOneQuarter = InputF::template ConstantPOT<-2>();
  InputF mask = kOneQuarter - InputF::FromScalarRaw(1);
  InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter;
  ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl(
      Rescale<0>(a_mod_quarter_minus_one_quarter));
  int32_t remainder = (a_mod_quarter_minus_one_quarter - a).raw();

#define GEMMLOWP_EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier)                 \
  if (kIntegerBits > Exponent)                                                      \
  {                                                                                 \
    const ResultF kMultiplier =                                                     \
        ResultF::FromScalarRaw(RoundingDivideByPOT(FixedPointMultiplier, 0));       \
    static constexpr int kShiftAmount =                                             \
        ((kIntegerBits > Exponent) ? (kFractionalBits + Exponent) : 0);             \
    result = ((remainder & (1 << kShiftAmount)) ? (result * kMultiplier) : result); \
  }

  GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947);
  GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674);
  GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084);
  GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308);
  GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535);
  GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401);
  GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242);

#undef GEMMLOWP_EXP_BARREL_SHIFTER

  static constexpr int clampB = ((kIntegerBits > 5) ? (36 - kIntegerBits) : 0);
  if (kIntegerBits > 5)
  {
    const InputF clamp = InputF::FromScalarRaw(RoundingDivideByPOT(-(1 << clampB), 0));
    result.raw() = ((a.raw() < clamp.raw()) ? ResultF::Zero().raw() : result.raw());
  }

  result.raw() = (a.raw() ? result.raw() : ResultF::One().raw());
  return result;
}

// Returns 1 / (1 + x) for x in (0, 1).
inline FixedPoint<0> one_over_one_plus_x_for_x_in_0_1(FixedPoint<0> a)
{
  typedef FixedPoint<0> F0;
  typedef FixedPoint<2> F2;
  F0 half_denominator = F0::FromScalarRaw(RoundingHalfSum(a.raw(), F0::One().raw()));
  // Newton-Raphson division
  // https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
  // Refer to that page for the logic behind the 48/17 and 32/17 constants.
  const F2 constant_48_over_17 = F2::FromScalarRaw(RoundingDivideByPOT(1515870810, 0));
  const F2 constant_neg_32_over_17 = F2::FromScalarRaw(RoundingDivideByPOT(-1010580540, 0));
  F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
  for (int i = 0; i < 3; i++)
  {
    F2 half_denominator_times_x = half_denominator * x;
    F2 one_minus_half_denominator_times_x = F2::One() - half_denominator_times_x;
    x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
  }
  return Rescale<0>(ExactMulByPot<-1>(x));
}

} // namespace gemmlowp
} // namespace cker
} // namespace nnfw

#endif // __NNFW_CKER_GEMMLOWP_FIXED_POINT_H__