summaryrefslogtreecommitdiff
path: root/compute/ARMComputeEx/src/runtime/CL/functions/CLFullyConnectedLayerEx.cpp
blob: 2ff4b9659d87727adcba25941ed58b23ffaf031e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/runtime/CL/functions/CLFullyConnectedLayerEx.h"

#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/Cast.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "support/MemorySupport.h"

#include <algorithm>

namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::utils::cast;

namespace
{
Status construct_gemmlowp_output_stage(const ITensorInfo &input, const ITensorInfo &weights,
                                       const ITensorInfo &output,
                                       GEMMLowpOutputStageInfo &gemmlowp_output_stage)
{
  gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
  gemmlowp_output_stage.gemmlowp_offset = 0;
  gemmlowp_output_stage.gemmlowp_multiplier = 0;
  gemmlowp_output_stage.gemmlowp_shift = 0;

  // Configure output stage for quantized case
  if (is_data_type_quantized_asymmetric(input.data_type()))
  {
    const UniformQuantizationInfo iq_info = input.quantization_info().uniform();
    const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
    const UniformQuantizationInfo oq_info = output.quantization_info().uniform();

    const auto output_quant_info = (output.total_size() == 0) ? iq_info : oq_info;

    const float multiplier = (iq_info.scale * wq_info.scale) / output_quant_info.scale;
    int output_multiplier = 0;
    int output_shift = 0;
    ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(
        multiplier, &output_multiplier, &output_shift));

    // Set the GEMMLowp output stage info
    gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
    gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
    gemmlowp_output_stage.gemmlowp_shift = output_shift;
    gemmlowp_output_stage.gemmlowp_min_bound = 0;
    gemmlowp_output_stage.gemmlowp_max_bound = 255;
    gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
    gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
  }

  return Status{};
}

Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const ITensorInfo *bias,
                   const ITensorInfo &output, const FullyConnectedLayerInfo &fc_info)
{
  GEMMLowpOutputStageInfo gemmlowp_output_stage;
  ARM_COMPUTE_RETURN_ON_ERROR(
      construct_gemmlowp_output_stage(input, weights, output, gemmlowp_output_stage));

  const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
                                       false, // is_b_reshaped
                                       true,  // reshape_b_only_on_first_run
                                       0,     // depth_output_gemm3d
                                       false, // reinterpret_input_as_3d
                                       fc_info.retain_internal_weights, // retain_internal_weights
                                       gemmlowp_output_stage,           // gemmlowp_output_stage
                                       fc_info.fp_mixed_precision,      // fp_mixed_precision
                                       true,                            // broadcast_bias
                                       ActivationLayerInfo());          // activation_info

  if (is_data_type_quantized_asymmetric(input.data_type()))
  {
    const UniformQuantizationInfo iq_info = input.quantization_info().uniform();
    const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();

    // Since we need negative offsets for computing convolution, we need to change
    // QuantizationInfo()
    // Extract and negate input and weights offset
    const QuantizationInfo input_quantization_info(iq_info.scale, -iq_info.offset);
    const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);

    // Validate gemmlowp function
    ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(
        &input.clone()->set_quantization_info(input_quantization_info),
        &weights.clone()->set_quantization_info(weights_quantization_info), bias, &output,
        gemm_info));
  }
  else
  {
    ARM_COMPUTE_RETURN_ON_ERROR(
        CLGEMM::validate(&input, &weights, bias, &output, 1.f, 1.f, gemm_info));
  }

  return Status{};
}
} // namespace

void CLFullyConnectedLayerReshapeWeightsEx::configure(const ICLTensor *input, ICLTensor *output)
{
  auto k = support::cpp14::make_unique<CLTransposeKernel>();
  k->configure(input, output);
  _kernel = std::move(k);
}

Status CLFullyConnectedLayerReshapeWeightsEx::validate(const ITensorInfo *input,
                                                       const ITensorInfo *output)
{
  return CLTransposeKernel::validate(input, output);
}

CLFullyConnectedLayerEx::CLFullyConnectedLayerEx(std::shared_ptr<IMemoryManager> memory_manager,
                                                 IWeightsManager *weights_manager)
    : _memory_group(memory_manager), _weights_manager(weights_manager), _convert_weights(),
      _convert_weights_managed(), _reshape_weights_managed_function(), _flatten_layer(),
      _reshape_weights_function(), _mm_gemm(memory_manager, weights_manager),
      _mm_gemmlowp(memory_manager), _flatten_output(), _converted_weights_output(),
      _reshape_weights_output(), _are_weights_converted(true), _are_weights_reshaped(true),
      _is_fc_after_conv(true), _is_quantized(false), _is_prepared(false), _original_weights(nullptr)
{
}
void CLFullyConnectedLayerEx::configure_mm(const ICLTensor *input, const ICLTensor *weights,
                                           const ICLTensor *bias, ICLTensor *output,
                                           const FullyConnectedLayerInfo &fc_info)
{
  GEMMLowpOutputStageInfo gemmlowp_output_stage;
  construct_gemmlowp_output_stage(*input->info(), *weights->info(), *output->info(),
                                  gemmlowp_output_stage);

  const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
                                       false, // is_b_reshaped
                                       true,  // reshape_b_only_on_first_run
                                       0,     // depth_output_gemm3d
                                       false, // reinterpret_input_as_3d
                                       fc_info.retain_internal_weights, // retain_internal_weights
                                       gemmlowp_output_stage,           // gemmlowp_output_stage
                                       fc_info.fp_mixed_precision,      // fp_mixed_precision
                                       true,                            // broadcast_bias
                                       ActivationLayerInfo());          // activation_info

  if (_is_quantized)
  {
    // Since we need negative offsets for computing convolution, we need to change
    // QuantizationInfo()
    // Extract and negate input and weights offset
    const QuantizationInfo input_quantization_info = input->info()->quantization_info();
    const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();

    input->info()->set_quantization_info(QuantizationInfo(
        input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
    weights->info()->set_quantization_info(QuantizationInfo(
        weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));

    // Configure gemmlowp function
    _mm_gemmlowp.configure(input, weights, bias, output, gemm_info);

    // Revert back QuantizatioInfo as input and weights could be used in other fully connected
    // layers
    input->info()->set_quantization_info(input_quantization_info);
    weights->info()->set_quantization_info(weights_quantization_info);
  }
  else
  {
    // Configure matrix multiply kernel
    _mm_gemm.configure(input, weights, bias, output, 1.f, 1.f, gemm_info);
  }
}

void CLFullyConnectedLayerEx::configure_conv_fc(const ICLTensor *input, const ICLTensor *weights,
                                                const ICLTensor *bias, ICLTensor *output,
                                                const FullyConnectedLayerInfo &fc_info)
{
  ARM_COMPUTE_ERROR_ON(
      (weights->info()->dimension(1) !=
       (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));

  // If the fully connected layer is called after a convolution layer, the input tensor must be
  // linearized

  // Initialize output tensor for flatten
  TensorShape shape_flatten = compute_flatten_shape(input->info());
  _flatten_output.allocator()->init(input->info()
                                        ->clone()
                                        ->set_is_resizable(true)
                                        .reset_padding()
                                        .set_tensor_shape(shape_flatten)
                                        .set_data_layout(DataLayout::NCHW));

  // Configure flatten kernel
  _memory_group.manage(&_flatten_output);
  _flatten_layer.configure(input, &_flatten_output);

  // Configure matrix multiply kernel
  configure_mm(&_flatten_output, weights, bias, output, fc_info);

  // Allocate the output tensor for flatten once all the configure methods have been called
  _flatten_output.allocator()->allocate();
}

void CLFullyConnectedLayerEx::configure_fc_fc(const ICLTensor *input, const ICLTensor *weights,
                                              const ICLTensor *bias, ICLTensor *output,
                                              const FullyConnectedLayerInfo &fc_info)
{
  ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));

  // Configure matrix multiply kernel
  configure_mm(input, weights, bias, output, fc_info);
}

void CLFullyConnectedLayerEx::configure(const ICLTensor *input, const ICLTensor *weights,
                                        const ICLTensor *biases, ICLTensor *output,
                                        FullyConnectedLayerInfo fc_info)
{
  ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);

  // Perform validate step
  ARM_COMPUTE_ERROR_THROW_ON(CLFullyConnectedLayerEx::validate(
      input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(),
      fc_info));

  _are_weights_converted = true;
  _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
  _is_fc_after_conv = true;
  _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
  _is_prepared = fc_info.retain_internal_weights;
  _original_weights = weights;

  if (_weights_manager)
  {
    _weights_manager->manage(weights);
  }

  const ICLTensor *weights_to_use = weights;

  // With the Fully Connected layer we can have 4 different cases:
  //  1) Convolution layer -> Fully Connected layer without batches
  //  2) Fully Connected layer -> Fully Connected layer without batches
  //  3) Convolution layer -> Fully Connected layer with batches
  //  4) Fully Connected layer -> Fully Connected layer with batches

  // Check if we have a fully connected layer with batches
  const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
  if (is_batched_fc_layer)
  {
    _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) &&
                        (std::equal(input->info()->tensor_shape().cbegin() + 3,
                                    input->info()->tensor_shape().cend(),
                                    output->info()->tensor_shape().cbegin() + 1));
  }
  else
  {
    _is_fc_after_conv = input->info()->num_dimensions() > 1;
  }

  // Reshape weights if needed
  if (!_are_weights_reshaped)
  {
    if (_weights_manager && _weights_manager->are_weights_managed(weights))
    {
      _reshape_weights_managed_function.configure(weights);
      weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(
          _weights_manager->acquire(weights, &_reshape_weights_managed_function));
    }
    else
    {
      // Reshape the weights
      _reshape_weights_function.configure(weights, &_reshape_weights_output);
      weights_to_use = &_reshape_weights_output;
    }
  }

  // Convert weights if needed
  if (_is_fc_after_conv && (input->info()->data_layout() != fc_info.weights_trained_layout))
  {
    if (_weights_manager && _weights_manager->are_weights_managed(weights_to_use))
    {
      _convert_weights_managed.configure(weights_to_use, input->info()->tensor_shape(),
                                         fc_info.weights_trained_layout);
      weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(
          _weights_manager->acquire(weights, &_convert_weights_managed));
    }
    else
    {
      // Convert weights
      _convert_weights.configure(weights_to_use, &_converted_weights_output,
                                 input->info()->tensor_shape(), fc_info.weights_trained_layout);

      weights_to_use = &_converted_weights_output;
    }
    _are_weights_converted = false;
  }

  if (_is_fc_after_conv)
  {
    // Fully Connected layer after a Convolution Layer without batches
    configure_conv_fc(input, weights_to_use, biases, output, fc_info);
  }
  else
  {
    // Fully Connected layer after a Fully Connected Layer without batches
    configure_fc_fc(input, weights_to_use, biases, output, fc_info);
  }
}

Status CLFullyConnectedLayerEx::validate(const ITensorInfo *input, const ITensorInfo *weights,
                                         const ITensorInfo *biases, const ITensorInfo *output,
                                         FullyConnectedLayerInfo fc_info)
{
  ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
  ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16,
                                                       DataType::F32);
  ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
  ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);

  bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
  bool is_fc_after_conv = true;

  const ITensorInfo &flatten_input = TensorInfo(input->clone()
                                                    ->set_is_resizable(true)
                                                    .reset_padding()
                                                    .set_tensor_shape(compute_flatten_shape(input))
                                                    .set_data_layout(DataLayout::NCHW));
  const ITensorInfo &reshaped_weights =
      TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(
          compute_transposed_shape(*weights)));
  const ITensorInfo &converted_weights =
      weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding())
                       : TensorInfo(*reshaped_weights.clone());

  // With the Fully Connected layer we can have 4 different cases:
  //  1) Convolution layer -> Fully Connected layer without batches
  //  2) Fully Connected layer -> Fully Connected layer without batches
  //  3) Convolution layer -> Fully Connected layer with batches
  //  4) Fully Connected layer -> Fully Connected layer with batches

  const ITensorInfo *input_to_use = input;
  const ITensorInfo *weights_to_use = weights;

  // Check if we have a fully connected layer with batches
  const bool is_batched_fc_layer = output->dimension(1) > 1;
  if (is_batched_fc_layer)
  {
    is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) &&
                       (std::equal(input->tensor_shape().cbegin() + 3, input->tensor_shape().cend(),
                                   output->tensor_shape().cbegin() + 1));
  }
  else
  {
    is_fc_after_conv = input->num_dimensions() > 1;
  }

  if (!weights_reshaped)
  {
    // Validate reshape weights kernel
    ARM_COMPUTE_RETURN_ON_ERROR(
        CLFullyConnectedLayerReshapeWeightsEx::validate(weights, &reshaped_weights));
    weights_to_use = &reshaped_weights;
  }

  if (is_fc_after_conv && (input->data_layout() != fc_info.weights_trained_layout))
  {
    // Validate convert weights kernel
    ARM_COMPUTE_RETURN_ON_ERROR(CLConvertFullyConnectedWeights::validate(
        weights_to_use, &converted_weights, input->tensor_shape(), fc_info.weights_trained_layout));
    weights_to_use = &converted_weights;
  }

  if (is_fc_after_conv)
  {
    // Fully Connected layer after a Convolution Layer without batches
    ARM_COMPUTE_RETURN_ERROR_ON(
        (weights_to_use->dimension(1) !=
         (input->dimension(0) * input->dimension(1) * input->dimension(2))));

    // Validate flatten kernel
    ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayer::validate(input, &flatten_input));
    input_to_use = &flatten_input;
  }
  else
  {
    // Fully Connected layer after a Fully Connected Layer without batches
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
  }

  // Validate matrix multiply kernel
  ARM_COMPUTE_RETURN_ON_ERROR(
      validate_mm(*input_to_use, *weights_to_use, biases, *output, fc_info));

  return Status{};
}

void CLFullyConnectedLayerEx::run()
{
  if (!_is_prepared)
  {
    if (!_are_weights_reshaped)
      _reshape_weights_output.allocator()->allocate();
    if (!_are_weights_converted)
      _converted_weights_output.allocator()->allocate();
    _is_prepared = true;
  }

  {
    if (!_weights_manager)
    {
      ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
    }

    // Pointer to current weights
    const ICLTensor *cur_weights = _original_weights;
    // Reshape of the weights
    if (!_are_weights_reshaped)
    {
      if (_weights_manager && _weights_manager->are_weights_managed(cur_weights))
      {
        _original_weights = utils::cast::polymorphic_downcast<ICLTensor *>(
            _weights_manager->run(cur_weights, &_reshape_weights_managed_function));
      }
      else
      {
        _reshape_weights_function.run();
        cur_weights = &_reshape_weights_output;
      }
    }

    // Convert weights if needed
    if (!_are_weights_converted)
    {
      if (_weights_manager && _weights_manager->are_weights_managed(cur_weights))
      {
        _weights_manager->run(cur_weights, &_convert_weights_managed);
      }
      else
      {
        _convert_weights.run();
      }
    }

    // Prepare GEMM prepare
    if (!_is_quantized)
    {
      _mm_gemm.prepare();
    }
  }

  MemoryGroupResourceScope scope_mg(_memory_group);

  // Linearize input if it comes from a convolutional layer
  if (_is_fc_after_conv)
  {
    _flatten_layer.run();
  }

  // Run matrix multiply
  if (_is_quantized)
  {
    _mm_gemmlowp.run();
  }
  else
  {
    _mm_gemm.run();
  }
}

void CLFullyConnectedLayerEx::prepare()
{
#if 0 // TODO Remove this block
    if(!_is_prepared)
    {
        if(!_weights_manager)
        {
            ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
        }

        auto release_unused = [](CLTensor * w)
        {
            if(!w->is_used())
            {
                CLScheduler::get().queue().finish();
                w->allocator()->free();
            }
        };

        // Pointer to current weights
        const ICLTensor *cur_weights = _original_weights;

        // Reshape of the weights if needed (happens only once)
        if(!_are_weights_reshaped)
        {
            if(_weights_manager && _weights_manager->are_weights_managed(_original_weights))
            {
                cur_weights = utils::cast::polymorphic_downcast<ICLTensor *>(_weights_manager->run(cur_weights, &_reshape_weights_managed_function));
            }
            else
            {
                // Run reshape weights kernel and mark weights as unused
                _reshape_weights_output.allocator()->allocate();
                _reshape_weights_function.run();

                cur_weights->mark_as_unused();
                cur_weights = &_reshape_weights_output;
            }
            _are_weights_reshaped = true;
        }

        // Convert weights if needed (happens only once)
        if(!_are_weights_converted)
        {
            if(_weights_manager && _weights_manager->are_weights_managed(cur_weights))
            {
                _weights_manager->run(cur_weights, &_convert_weights_managed);
            }
            else
            {
                _converted_weights_output.allocator()->allocate();
                _convert_weights.run();
                cur_weights->mark_as_unused();
            }

            _are_weights_converted = true;
        }

        // Release reshaped weights if unused
        release_unused(&_reshape_weights_output);

        // Prepare GEMM prepare and release unused weights
        if(!_is_quantized)
        {
            _mm_gemm.prepare();
        }

        // Release converted weights if unused
        release_unused(&_reshape_weights_output);
        release_unused(&_converted_weights_output);

        _is_prepared = true;
    }
#endif
}
} // namespace arm_compute