summaryrefslogtreecommitdiff
path: root/compiler/record-minmax/src/MinMaxObserver.cpp
blob: e6edbdca938b31c9b5ddebc622340495ab12eecc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "MinMaxObserver.h"

#include <luci/IR/CircleOpcode.h>

#include <limits>
#include <math.h>

using DataType = luci_interpreter::DataType;

namespace record_minmax
{

// postTensorWrite is only called for a node producing a tensor
void MinMaxObserver::postTensorWrite(const luci::CircleNode *node,
                                     const luci_interpreter::Tensor *tensor)
{
  // CircleOutput does not produce a tensor
  assert(node->opcode() != luci::CircleOpcode::CIRCLEOUTPUT);

  // Operators with multiple outputs
  assert(node->opcode() != luci::CircleOpcode::IF);
  assert(node->opcode() != luci::CircleOpcode::SPLIT);
  assert(node->opcode() != luci::CircleOpcode::SPLIT_V);
  assert(node->opcode() != luci::CircleOpcode::TOPK_V2);
  assert(node->opcode() != luci::CircleOpcode::UNPACK);
  assert(node->opcode() != luci::CircleOpcode::WHILE);

  if (node->opcode() == luci::CircleOpcode::CIRCLECONST)
  {
    // node is not activation. Do nothing.
    return;
  }

  if (node->dtype() == DataType::BOOL)
  {
    // Bool type tensor is not quantized
    return;
  }
  if (node->dtype() == DataType::S32)
  {
    // Integer type tensor is not quantized
    return;
  }
  if (node->dtype() == DataType::S64)
  {
    // Integer type tensor is not quantized
    return;
  }

  // Only support recording of float32 values
  if (tensor->element_type() != DataType::FLOAT32)
  {
    // Exceptions that should be processed in backends
    switch (node->opcode())
    {
      case luci::CircleOpcode::CAST:
        // Cast is quantized only if it converts <type> -> float.
        // Other cases should be processed in backends.
      case luci::CircleOpcode::RESHAPE:
        // Reshape changes only shape of input tensor, efficiently is it a no-op.
        return;
      default:
        throw std::runtime_error("Tensor's data type is not float. " + node->name());
    }
  }

  const auto data = tensor->data<float>();
  const auto num_elements = tensor->shape().num_elements();

  std::vector<float> buf(data, data + num_elements);

  float max = std::numeric_limits<float>::lowest();
  float min = std::numeric_limits<float>::max();

  bool all_nan = true;
  for (auto number : buf)
  {
    if (isnan(number))
      continue;

    // TODO use metadata hints to detect such cases
    if (number == std::numeric_limits<float>::lowest())
      continue;

    all_nan = false;

    if (number > max)
      max = number;

    if (number < min)
      min = number;
  }

  if (all_nan)
    throw std::runtime_error("All values are NaN(Not a Number)");

  _minmax_data.recordMinMax(node, min, max);
}

} // namespace record_minmax