summaryrefslogtreecommitdiff
path: root/compiler/mir-interpreter/src/ops/Concat.cpp
blob: 99fe00c3107b47e308ada354f14e1fafb0d486f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
 * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright 2019 The TensorFlow Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Concat.h"
#include "Common.h"

#include <cmath>
#include <cstring>

namespace mir_interpreter
{

template <typename T> struct ConcatImpl
{
  static void run(const std::vector<std::reference_wrapper<const mir::TensorVariant>> &inputs,
                  int axis, mir::TensorVariant &output);
};

template <typename T>
void ConcatImpl<T>::run(const std::vector<std::reference_wrapper<const mir::TensorVariant>> &inputs,
                        int axis, mir::TensorVariant &output)
{
  const auto &output_shape = output.getShape();
  const size_t inputs_count = inputs.size();
  const int32_t concat_dims = output_shape.rank();
  int64_t concat_size = 0;
  for (size_t i = 0; i < inputs_count; i++)
  {
    const auto &input_shape = inputs[i].get().getShape();
    assert(input_shape.rank() == concat_dims);
    for (int32_t j = 0; j < concat_dims; j++)
    {
      if (j != axis)
      {
        assert(input_shape.dim(j) == output_shape.dim(j));
      }
    }
    concat_size += input_shape.dim(axis);
  }
  assert(concat_size == output_shape.dim(axis));
  // Outer size before axis
  int32_t outer_size = 1;
  for (int32_t i = 0; i < axis; i++)
    outer_size *= output_shape.dim(i);
  // Inner size after axis
  int32_t base_inner_size = 1;
  for (int32_t i = axis + 1; i < concat_dims; i++)
    base_inner_size *= output_shape.dim(i);
  // flatten = outer_size * dim(axis) * base_inner_size;
  std::vector<int32_t> copy_sizes;
  std::vector<char *> input_ptrs;
  for (size_t i = 0; i < inputs_count; i++)
  {
    const auto input_shape = inputs[i].get().getShape();
    copy_sizes.push_back(input_shape.dim(axis) * base_inner_size);
    input_ptrs.push_back(inputs[i].get().atOffset(0));
  }

  char *output_ptr = output.atOffset(0);
  const size_t elem_size = inputs[0].get().getElementSize();
  for (int32_t i = 0; i < outer_size; i++)
  {
    for (size_t j = 0; j < inputs_count; j++)
    {
      std::memcpy(output_ptr, input_ptrs[j], copy_sizes[j] * elem_size);
      output_ptr += copy_sizes[j] * elem_size;
      input_ptrs[j] += copy_sizes[j] * elem_size;
    }
  }
}

template <> struct ConcatImpl<uint8_t>
{
  static void run(const std::vector<std::reference_wrapper<const mir::TensorVariant>> &inputs,
                  int axis, mir::TensorVariant &output);
};

void ConcatImpl<uint8_t>::run(
    const std::vector<std::reference_wrapper<const mir::TensorVariant>> &inputs, int axis,
    mir::TensorVariant &output)
{
  const size_t inputs_count = inputs.size();
  std::vector<int32_t> input_zeropoints(inputs_count);
  std::vector<float> input_scales(inputs_count);
  const auto &output_shape = output.getShape();
  const int32_t concat_dimensions = output_shape.rank();
  int64_t concat_size = 0;
  for (size_t i = 0; i < inputs_count; i++)
  {
    const auto &input_type = inputs[i].get().getType();
    assert(input_type.isQuantized());
    assert(input_type.getElementType() == mir::DataType::UINT8);
    const auto &input_shape = input_type.getShape();
    assert(input_shape.rank() == concat_dimensions);

    for (int32_t j = 0; j < concat_dimensions; j++)
      if (j != axis)
        assert(input_shape.dim(j) == output_shape.dim(j));

    concat_size += input_shape.dim(axis);
    input_zeropoints[i] = input_type.getQuantization().getZeroPoint();
    input_scales[i] = input_type.getQuantization().getScale();
  }
  assert(concat_size == output_shape.dim(axis));

  const auto &output_type = output.getType();
  assert(output_type.isQuantized());
  int32_t output_zeropoint = output_type.getQuantization().getZeroPoint();
  float output_scale = output_type.getQuantization().getScale();

  // Outer size before axis
  int32_t outer_size = 1;
  for (int32_t i = 0; i < axis; i++)
    outer_size *= output_shape.dim(i);
  // Inner size after axis
  int32_t base_inner_size = 1;
  for (int32_t i = axis + 1; i < concat_dimensions; i++)
    base_inner_size *= output_shape.dim(i);
  // flatten = outer_size * dim(axis) * base_inner_size;

  uint8_t *output_ptr = reinterpret_cast<uint8_t *>(output.atOffset(0));

  const float inverse_output_scale = 1.f / output_scale;
  for (int k = 0; k < outer_size; k++)
  {
    for (size_t i = 0; i < inputs_count; ++i)
    {
      const mir::TensorVariant &input = inputs[i];
      const int copy_size = input.getShape().dim(axis) * base_inner_size;
      const char *input_data = input.atOffset(0) + k * copy_size;
      const uint8_t *input_ptr = reinterpret_cast<const uint8_t *>(input_data);
      if (input_zeropoints[i] == output_zeropoint && input_scales[i] == output_scale)
      {
        std::memcpy(output_ptr, input_ptr, copy_size);
      }
      else
      {
        const float scale = input_scales[i] * inverse_output_scale;
        const float bias = -input_zeropoints[i] * scale;
        for (int j = 0; j < copy_size; ++j)
        {
          const int32_t value =
              static_cast<int32_t>(std::round(input_ptr[j] * scale + bias)) + output_zeropoint;
          output_ptr[j] = static_cast<uint8_t>(std::max(std::min(255, value), 0));
        }
      }
      output_ptr += copy_size;
    }
  }
}

void Concat(const std::vector<std::reference_wrapper<const mir::TensorVariant>> &inputs, int axis,
            mir::TensorVariant &output)
{
  dispatch<ConcatImpl>(inputs[0].get().getElementType(), inputs, axis, output);
}

} // namespace mir_interpreter