summaryrefslogtreecommitdiff
path: root/compiler/luci-interpreter/include/luci_interpreter/core/Tensor.h
blob: 998789882875d22dfb593e3b0e6ea3bb4ce48eee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
 * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef LUCI_INTERPRETER_CORE_TENSOR_H
#define LUCI_INTERPRETER_CORE_TENSOR_H

#include "luci_interpreter/core/DataType.h"

#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <vector>

namespace luci_interpreter
{

class Shape
{
public:
  explicit Shape(int rank) : _dims(rank, 0) {}

  Shape(std::initializer_list<int32_t> dims) : _dims(dims.begin(), dims.end()) {}

  int num_dims() const { return _dims.size(); }

  int32_t dim(int i) const
  {
    assert(i >= 0 && i < static_cast<int>(_dims.size()));
    return _dims[i];
  }

  int32_t &dim(int i)
  {
    assert(i >= 0 && i < static_cast<int>(_dims.size()));
    return _dims[i];
  }

  int32_t num_elements() const
  {
    int32_t result = 1;
    for (const int32_t dim : _dims)
    {
      result *= dim;
    }
    return result;
  }

  bool operator==(const Shape &other) const { return _dims == other._dims; }

  bool operator!=(const Shape &other) const { return !operator==(other); }

private:
  std::vector<int32_t> _dims;
};

// Tensor affine quantization parameters.
//
// The relationship between real and quantized values:
//   real_value = (quantized_value - zero_point) * scale
//
// In per-tensor case, 'scale' and 'zero_point' are one element each.
// In per-channel case, 'scale' and 'zero_point' are N elements each, where N is the size
// of the quantized dimension.
//
// Note that due to historical and performance reasons, per-tensor quantization uses unsigned
// integer types, while per-channel uses signed types assuming 'zero_point' == 0.
//
// TODO Add 'quantized_dimension' field for per-channel case when IR provides it.
struct AffineQuantization
{
  std::vector<float> scale;
  std::vector<int32_t> zero_point;
};

class Tensor
{
public:
  Tensor(DataType element_type, Shape shape, AffineQuantization quantization, std::string name);

  DataType element_type() const { return _element_type; }

  const Shape &shape() const { return _shape; }

  float scale() const
  {
    assert(_quantization.scale.size() == 1);
    return _quantization.scale[0];
  }

  float zero_point() const
  {
    assert(_quantization.zero_point.size() == 1);
    return _quantization.zero_point[0];
  }

  template <typename T> const T *data() const { return reinterpret_cast<const T *>(_data.get()); }

  template <typename T> T *data() { return reinterpret_cast<T *>(_data.get()); }

  const std::string &name() const { return _name; }

  void readData(void *data_ptr, size_t data_size) const;

  void writeData(const void *data_ptr, size_t data_size);

  void resize(const Shape &new_shape);

private:
  DataType _element_type;
  Shape _shape;
  AffineQuantization _quantization;
  std::unique_ptr<uint8_t[]> _data;
  std::string _name;
};

} // namespace luci_interpreter

#endif // LUCI_INTERPRETER_CORE_TENSOR_H