summaryrefslogtreecommitdiff
path: root/compiler/ann-ref/src/ops/Pad.cpp
blob: 91741762d7f56587a4f5c1a2457d049443bcf034 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
 * Copyright (C) 2017 The Android Open Source Project
 * Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Pad.h"
#include "Assert.h"
#include "Logging.h"

#include "internal/Dims.h"

#include <vector>
#include <cstring> // For 'memset'

bool padPrepare(const Shape& input, const int32_t* paddingsData,  const Shape& paddingsShape,
                Shape* output)
{
  // Currently only 4D tensors are supported.
  uint32_t numInputDims = getNumberOfDimensions(input);
  ASSERT(numInputDims == 4);

  // paddings need to be provided as a 2-D int32 tensor.
  ASSERT(paddingsShape.type == OperandType::TENSOR_INT32);
  ASSERT(getNumberOfDimensions(paddingsShape) == 2);
  ASSERT(getSizeOfDimension(paddingsShape, 0) == numInputDims);
  ASSERT(getSizeOfDimension(paddingsShape, 1) == 2);

  std::vector<uint32_t> outDims(numInputDims);
  for (uint32_t i = 0; i < numInputDims; ++i)
  {
    int32_t beforePadding = *paddingsData++;
    int32_t afterPadding = *paddingsData++;
    // Pad value has to be greater than equal to 0.
    ASSERT(beforePadding >= 0 && afterPadding >= 0);
    outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding;
  }
  output->type = input.type;
  output->dimensions = outDims;
  output->offset = input.offset;
  output->scale = input.scale;

  return true;
}

namespace
{

// From optimized_ops.h in TensorFlow Lite
template <typename T>
inline void Pad(const T* input_data, const Dims<4>& input_dims,
                const std::vector<int>& left_paddings,
                const std::vector<int>& right_paddings, T* output_data,
                const Dims<4>& output_dims) {
  const int output_batch = ArraySize(output_dims, 3);
  const int output_height = ArraySize(output_dims, 2);
  const int output_width = ArraySize(output_dims, 1);
  const int output_depth = ArraySize(output_dims, 0);

  const int left_b_padding = left_paddings[3];
  const int left_h_padding = left_paddings[2];
  const int left_w_padding = left_paddings[1];
  const int left_d_padding = left_paddings[0];

  const int right_b_padding = right_paddings[3];
  const int right_h_padding = right_paddings[2];
  const int right_w_padding = right_paddings[1];
  const int right_d_padding = right_paddings[0];

  const int input_depth = ArraySize(input_dims, 0);

  if (left_b_padding != 0)
  {
    memset(output_data, 0, left_b_padding * output_height * output_width * output_depth *
           sizeof(T));
  }
  for (int out_b = left_b_padding; out_b < output_batch - right_b_padding; ++out_b)
  {
    if (left_h_padding != 0)
    {
      memset(output_data + Offset(output_dims, 0, 0, 0, out_b), 0,
             left_h_padding * output_width * output_depth * sizeof(T));
    }
    for (int out_h = left_h_padding; out_h < output_height - right_h_padding; ++out_h)
    {
      if (left_w_padding != 0)
      {
        memset(output_data + Offset(output_dims, 0, 0, out_h, out_b), 0,
               left_w_padding * output_depth * sizeof(T));
      }
      for (int out_w = left_w_padding; out_w < output_width - right_w_padding; ++out_w)
      {
        if (left_d_padding != 0)
        {
          memset(output_data + Offset(output_dims, 0, out_w, out_h, out_b), 0,
                 left_d_padding * sizeof(T));
        }

        T* out = output_data +
                 Offset(output_dims, left_d_padding, out_w, out_h, out_b);
        const T* in =
            input_data + Offset(input_dims, 0, out_w - left_w_padding,
                                out_h - left_h_padding, out_b - left_b_padding);
        memcpy(out, in, input_depth * sizeof(T));

        if (right_d_padding != 0)
        {
          memset(
              output_data + Offset(output_dims, output_depth - right_d_padding,
                                   out_w, out_h, out_b),
              0, right_d_padding * sizeof(T));
        }
      }
      if (right_w_padding != 0)
      {
        memset(
            output_data + Offset(output_dims, 0, output_width - right_w_padding,
                                 out_h, out_b),
            0, right_w_padding * output_depth * sizeof(T));
      }
    }
    if (right_h_padding != 0)
    {
      memset(output_data + Offset(output_dims, 0, 0,
                                  output_height - right_h_padding, out_b),
             0, right_h_padding * output_width * output_depth * sizeof(T));
    }
  }
  if (right_b_padding != 0)
  {
    memset(output_data +
               Offset(output_dims, 0, 0, 0, output_batch - right_b_padding),
           0,
           right_b_padding * output_height * output_width * output_depth *
               sizeof(T));
  }
}

} // namespace

bool padGeneric(const uint8_t* inputData, const Shape& inputShape, const int32_t* paddings,
                uint8_t* outputData, const Shape& outputShape)
{
  int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));

  std::vector<int> beforePadding;
  std::vector<int> afterPadding;
  // The lower level implementation expects the paddings in the reverse order.
  for (int32_t i = numInputDims - 1; i >= 0; --i)
  {
    beforePadding.push_back(paddings[i * 2]);
    afterPadding.push_back(paddings[i * 2 + 1]);
  }

  if (inputShape.type == OperandType::TENSOR_FLOAT32)
  {
    ::Pad(reinterpret_cast<const float*>(inputData),
          convertShapeToDims(inputShape),
          beforePadding, afterPadding,
          reinterpret_cast<float*>(outputData),
          convertShapeToDims(outputShape));
  }
  else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM)
  {
    ::Pad(reinterpret_cast<const uint8_t*>(inputData),
          convertShapeToDims(inputShape),
          beforePadding, afterPadding,
          reinterpret_cast<uint8_t*>(outputData),
          convertShapeToDims(outputShape));
  }
  else
  {
    LOG(ERROR) << "Unsupported data type";
    return false;
  }
  return true;
}