/* * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tflite/kernels/register.h" #include "tensorflow/contrib/lite/model.h" #include "tensorflow/contrib/lite/builtin_op_data.h" #include "env.h" #include "memory.h" #include "util/environment.h" #include "util/feature/Shape.h" #include "tflite/Diff.h" #include "tflite/Quantization.h" #include "tflite/interp/FunctionBuilder.h" #include #include #include #include using namespace tflite; using namespace tflite::ops::builtin; int main(int argc, char **argv) { int verbose = 0; int tolerance = 1; nnfw::util::env::IntAccessor("VERBOSE").access(verbose); nnfw::util::env::IntAccessor("TOLERANCE").access(tolerance); #define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE); #include "relu1_1.lst" #undef INT_VALUE const int32_t IFM_H = IFM_H_Value(); const int32_t IFM_W = IFM_W_Value(); // Set random seed int SEED = std::chrono::system_clock::now().time_since_epoch().count(); nnfw::util::env::IntAccessor("SEED").access(SEED); // Initialize random number generator std::minstd_rand random(SEED); std::cout << "Configurations:" << std::endl; #define PRINT_NEWLINE() \ { \ std::cout << std::endl; \ } #define PRINT_VALUE(value) \ { \ std::cout << " " << #value << ": " << (value) << std::endl; \ } PRINT_VALUE(SEED); PRINT_NEWLINE(); PRINT_VALUE(IFM_H); PRINT_VALUE(IFM_W); #undef PRINT_VALUE #undef PRINT_NEWLINE const int32_t OFM_H = IFM_H; const int32_t OFM_W = IFM_W; auto setup = [&](Interpreter &interp) { // Comment from 'context.h' // // Parameters for asymmetric quantization. Quantized values can be converted // back to float using: // real_value = scale * (quantized_value - zero_point); // // Q: Is this necessary? TfLiteQuantizationParams quantization = make_default_quantization(); // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N) interp.AddTensors(2); // Configure Output Tensor interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "output" /* name */, {OFM_H, OFM_W} /* dims */, quantization); // Configure Input Tensor interp.SetTensorParametersReadWrite(1, kTfLiteFloat32 /* type */, "input" /* name */, {IFM_H, IFM_W} /* dims */, quantization); // Add ReLU Node // Run ReLU and store its result into Tensor #0 // - Read IFM from Tensor #1 interp.AddNodeWithParameters({1}, {0}, nullptr, 0, nullptr, BuiltinOpResolver().FindOp(BuiltinOperator_RELU_N1_TO_1, 1)); // Set Tensor #1 as Input #0, and Tensor #0 as Output #0 interp.SetInputs({1}); interp.SetOutputs({0}); }; const nnfw::support::tflite::interp::FunctionBuilder builder(setup); RandomTestParam param; param.verbose = verbose; param.tolerance = tolerance; return RandomTestRunner{SEED, param}.run(builder); }