/* * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gtest/gtest.h" #include "tflite/kernels/register.h" #include "tensorflow/contrib/lite/model.h" #include "tensorflow/contrib/lite/builtin_op_data.h" #include "env.h" #include "memory.h" #include "util/environment.h" #include "tflite/Diff.h" #include "tflite/interp/FunctionBuilder.h" #include #include #include #include using namespace tflite; using namespace tflite::ops::builtin; TEST(NNAPI_Quickcheck_mul_1, simple_test) { int verbose = 0; int tolerance = 1; nnfw::util::env::IntAccessor("VERBOSE").access(verbose); nnfw::util::env::IntAccessor("TOLERANCE").access(tolerance); // Set random seed int SEED = std::chrono::system_clock::now().time_since_epoch().count(); nnfw::util::env::IntAccessor("SEED").access(SEED); #define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE); #include "mul_1.lst" #undef INT_VALUE const int32_t LEFT_1D = LEFT_1D_Value(); const int32_t LEFT_2D = LEFT_2D_Value(); const int32_t LEFT_3D = LEFT_3D_Value(); const int32_t RIGHT_W = RIGHT_W_Value(); const int32_t OFM_1D = LEFT_1D_Value(); const int32_t OFM_2D = LEFT_2D_Value(); const int32_t OFM_3D = LEFT_3D_Value(); // Initialize random number generator std::minstd_rand random(SEED); std::cout << "Configurations:" << std::endl; #define PRINT_NEWLINE() \ { \ std::cout << std::endl; \ } #define PRINT_VALUE(value) \ { \ std::cout << " " << #value << ": " << (value) << std::endl; \ } PRINT_VALUE(SEED); PRINT_NEWLINE(); PRINT_VALUE(LEFT_1D); PRINT_VALUE(LEFT_2D); PRINT_VALUE(LEFT_3D); PRINT_NEWLINE(); PRINT_VALUE(RIGHT_W); PRINT_NEWLINE(); PRINT_VALUE(OFM_1D); PRINT_VALUE(OFM_2D); PRINT_VALUE(OFM_3D); #undef PRINT_VALUE #undef PRINT_NEWLINE auto setup = [&](Interpreter &interp) { // Comment from 'context.h' // // Parameters for asymmetric quantization. Quantized values can be converted // back to float using: // real_value = scale * (quantized_value - zero_point); // // Q: Is this necessary? TfLiteQuantizationParams quantization; quantization.scale = 1; quantization.zero_point = 0; // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N) interp.AddTensors(3); // Configure output interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "output" /* name */, {OFM_1D, OFM_2D, OFM_3D} /* dims */, quantization); // Configure input(s) interp.SetTensorParametersReadWrite(1, kTfLiteFloat32 /* type */, "left" /* name */, {LEFT_1D, LEFT_2D, LEFT_3D} /* dims */, quantization); interp.SetTensorParametersReadWrite(2, kTfLiteFloat32 /* type */, "right" /* name */, {RIGHT_W} /* dims */, quantization); // Add MUL Node // // NOTE AddNodeWithParameters take the ownership of param, and deallocate it with free // So, param should be allocated with malloc auto param = make_alloc(); param->activation = kTfLiteActNone; // Run MUL and store the result into Tensor #0 // - Read Left from Tensor #1 // - Read Right from Tensor #2, interp.AddNodeWithParameters({1, 2}, {0}, nullptr, 0, reinterpret_cast(param), BuiltinOpResolver().FindOp(BuiltinOperator_MUL, 1)); interp.SetInputs({1, 2}); interp.SetOutputs({0}); }; const nnfw::support::tflite::interp::FunctionBuilder builder(setup); RandomTestParam param; param.verbose = verbose; param.tolerance = tolerance; param.tensor_logging = 1; param.log_path = "report/tensor_mul_1.log"; int res = RandomTestRunner{SEED, param}.run(builder); EXPECT_EQ(res, 0); }