/* * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gtest/gtest.h" #include "tflite/ext/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/builtin_op_data.h" #include "env.h" #include "memory.h" #include "misc/environment.h" #include "tflite/Diff.h" #include "tflite/interp/FunctionBuilder.h" #include #include using namespace tflite; using namespace nnfw::tflite; TEST(NNAPI_Quickcheck_gather_2, simple_test) { // Set random seed int SEED = std::chrono::system_clock::now().time_since_epoch().count(); nnfw::misc::env::IntAccessor("SEED").access(SEED); // Set random test parameters int verbose = 0; int tolerance = 1; nnfw::misc::env::IntAccessor("VERBOSE").access(verbose); nnfw::misc::env::IntAccessor("TOLERANCE").access(tolerance); #define INT_VALUE(NAME, VALUE) IntVar NAME##_Value(#NAME, VALUE); #include "gather_2.lst" #undef INT_VALUE const int32_t INPUT_DATA_H = INPUT_DATA_H_Value(); const int32_t INPUT_DATA_W = INPUT_DATA_W_Value(); const int32_t INDEX_DATA = INDEX_DATA_Value(); const int32_t OUTPUT_DATA_H = INPUT_DATA_H; const int32_t OUTPUT_DATA_W = INDEX_DATA; std::cout << "Configurations:" << std::endl; #define PRINT_NEWLINE() \ { \ std::cout << std::endl; \ } #define PRINT_VALUE(value) \ { \ std::cout << " " << #value << ": " << (value) << std::endl; \ } PRINT_VALUE(SEED); PRINT_NEWLINE(); PRINT_VALUE(INPUT_DATA_H); PRINT_VALUE(INPUT_DATA_W); PRINT_VALUE(INDEX_DATA); PRINT_NEWLINE(); PRINT_VALUE(OUTPUT_DATA_H); PRINT_VALUE(OUTPUT_DATA_W); #undef PRINT_VALUE #undef PRINT_NEWLINE auto setup = [&](Interpreter &interp) { // Comment from 'context.h' // // Parameters for asymmetric quantization. Quantized values can be converted // back to float using: // real_value = scale * (quantized_value - zero_point); // // Q: Is this necessary? TfLiteQuantizationParams quantization; quantization.scale = 1; quantization.zero_point = 0; // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N) interp.AddTensors(3); // Configure INPUT_DATA interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "input" /* name */, {INPUT_DATA_H, INPUT_DATA_W} /* dims */, quantization); // Configure INDEX_DATA interp.SetTensorParametersReadWrite(1, kTfLiteInt32 /* type */, "index" /* name */, {INDEX_DATA} /* dims */, quantization); // Configure OUTPUT_VALUES interp.SetTensorParametersReadWrite(2, kTfLiteFloat32 /* type */, "output_data" /* name */, {OUTPUT_DATA_H, OUTPUT_DATA_W} /* dims */, quantization); auto *param = reinterpret_cast(malloc(sizeof(TfLiteGatherParams))); param->axis = 0; // Add GATHER Node // Run GATHER and store its result into Tensor #2 // - Read input data and index_data from Tensor #0 and #1, respectively interp.AddNodeWithParameters({0, 1}, {2}, nullptr, 0, reinterpret_cast(param), BuiltinOpResolver().FindOp(BuiltinOperator_GATHER, 1)); // Set Tensor #0 and #1 as Input, and Tensor #2 as Output interp.SetInputs({0, 1}); interp.SetOutputs({2}); }; const nnfw::tflite::FunctionBuilder builder(setup); RandomTestParam param; param.verbose = verbose; param.tolerance = tolerance; int res = RandomTestRunner{SEED, param}.run(builder); EXPECT_EQ(res, 0); }