/* * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "gtest/gtest.h" #include "tflite/kernels/register.h" #include "tensorflow/contrib/lite/model.h" #include "tensorflow/contrib/lite/builtin_op_data.h" #include "env.h" #include "memory.h" #include "util/environment.h" #include "tflite/Diff.h" #include "tflite/TensorShapeUtils.h" #include "tflite/interp/FunctionBuilder.h" #include #include #include #include using namespace tflite; using namespace tflite::ops::builtin; TEST(NNAPI_Quickcheck_add_3, simple_test) { // Set random seed int SEED = std::chrono::system_clock::now().time_since_epoch().count(); nnfw::util::env::IntAccessor("SEED").access(SEED); // Initialize random number generator std::minstd_rand random(SEED); #define STR_VALUE(NAME, VALUE) StrVar NAME##_Value(#NAME, VALUE); #include "add_3.lst" #undef STR_VALUE const auto LHS_SHAPE = nnfw::util::tensor::Shape::from(LHS_SHAPE_Value()); const auto RHS_SHAPE = nnfw::util::tensor::Shape::from(RHS_SHAPE_Value()); const auto OUT_SHAPE = nnfw::support::tflite::broadcast(LHS_SHAPE, RHS_SHAPE); std::cout << "Configurations:" << std::endl; #define PRINT_NEWLINE() \ { \ std::cout << std::endl; \ } #define PRINT_VALUE(value) \ { \ std::cout << " " << #value << ": " << (value) << std::endl; \ } PRINT_VALUE(SEED); PRINT_NEWLINE(); PRINT_VALUE(LHS_SHAPE); PRINT_VALUE(RHS_SHAPE); PRINT_VALUE(OUT_SHAPE); #undef PRINT_VALUE #undef PRINT_NEWLINE auto setup = [&](Interpreter &interp) { using nnfw::support::tflite::as_dims; // Comment from 'context.h' // // Parameters for asymmetric quantization. Quantized values can be converted // back to float using: // real_value = scale * (quantized_value - zero_point); // // Q: Is this necessary? TfLiteQuantizationParams quantization; quantization.scale = 1; quantization.zero_point = 0; // On AddTensors(N) call, T/F Lite interpreter creates N tensors whose index is [0 ~ N) interp.AddTensors(3); // Configure output interp.SetTensorParametersReadWrite(0, kTfLiteFloat32 /* type */, "output" /* name */, as_dims(OUT_SHAPE), quantization); // Configure input(s) interp.SetTensorParametersReadWrite(1, kTfLiteFloat32 /* type */, "left" /* name */, as_dims(LHS_SHAPE), quantization); interp.SetTensorParametersReadWrite(2, kTfLiteFloat32 /* type */, "right" /* name */, as_dims(RHS_SHAPE), quantization); // Add Convolution Node // // NOTE AddNodeWithParameters take the ownership of param, and deallocate it with free // So, param should be allocated with malloc auto param = make_alloc(); param->activation = kTfLiteActNone; // Run Add and store the result into Tensor #0 // - Read Left from Tensor #1 // - Read Left from Tensor #2, interp.AddNodeWithParameters({1, 2}, {0}, nullptr, 0, reinterpret_cast(param), BuiltinOpResolver().FindOp(BuiltinOperator_ADD, 1)); interp.SetInputs({1, 2}); interp.SetOutputs({0}); }; const nnfw::support::tflite::interp::FunctionBuilder builder(setup); RandomTestParam param; param.verbose = 0; param.tolerance = 1; nnfw::util::env::IntAccessor("VERBOSE").access(param.verbose); nnfw::util::env::IntAccessor("TOLERANCE").access(param.tolerance); int res = RandomTestRunner{SEED, param}.run(builder); EXPECT_EQ(res, 0); }