/* * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved * Copyright (c) 2016-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/NEON/NEElementwiseOperationFuncs.h" #include #include "arm_compute/core/Types.h" #include "arm_compute/core/NEON/NEAsymm.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/Window.h" namespace { void store_quantized_int32(uint8_t *output_ptr, const int32x4x4_t &out) { const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1]))); const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3]))); vst1q_u8(output_ptr, vcombine_u8(pa, pb)); } using namespace arm_compute; template void elementwise_op_templ( const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &), int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool), int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = std::min(16 / static_cast(sizeof(OutputScalarType)), 8); const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); if (is_broadcast_across_x) { const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const InputScalarType broadcast_value = *reinterpret_cast(broadcast_input.ptr()); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const auto a = *(non_broadcast_input_ptr + x); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value); } }, broadcast_input, non_broadcast_input, output); } else { // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop(win, [&](const Coordinates &) { auto output_ptr = reinterpret_cast(output.ptr()); const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr); for (; x < window_end_x; ++x) { const auto a = *(input1_ptr + x); const auto b = *(input2_ptr + x); *(output_ptr + x) = (*scalar_func)(a, b); } }, input1, input2, output); } } } // namespace namespace arm_compute { float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale) { qasymm8x16_t x = vld1q_u8(input1_ptr); const float32x4x4_t out = {{ vmulq_f32( vcvtq_f32_s32(vsubq_s32( vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32( vcvtq_f32_s32(vsubq_s32( vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale), vmulq_f32( vcvtq_f32_s32(vsubq_s32( vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), vmulq_f32( vcvtq_f32_s32(vsubq_s32( vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale), }}; return out; } void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale) { int32x4x4_t out = {{ vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)), vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)), }}; store_quantized_int32(output_ptr, out); } float32x4x4_t dup_quantized(uint8_t broadcast_value, int offset, float scale) { const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value); const int32x4_t voffset = vdupq_n_s32(offset); const float32x4_t vscale = vdupq_n_f32(scale); const float32x4x4_t broadcast_vector = {{ vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16( vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16( vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16( vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16( vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale), }}; return broadcast_vector; } void elementwise_op_quantized( const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, uint8_t (*scalar_func)(const float &, const float &, QuantizationInfo), int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t, float32x4_t, float32x4_t, const bool), int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *, int32x4_t, int32x4_t, float32x4_t, float32x4_t, float32x4_t, float32x4_t)) { // Create input windows Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()); Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()); // Clear X Dimension on execution window as we handle manually Window win = window; win.set(Window::DimX, Window::Dimension(0, 1, 1)); const int window_step_x = 16; const auto window_start_x = static_cast(window.x().start()); const auto window_end_x = static_cast(window.x().end()); const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0); const float output_scale = out->info()->quantization_info().scale; const int output_offset = out->info()->quantization_info().offset; // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from // zero) const float32x4_t voffseto = vdupq_n_f32(output_offset + 0.5f); const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_scale); if (is_broadcast_across_x) { // Select the broadcast input on the X axis const bool is_broadcast_input_2 = input2_win.x().step() == 0; Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win; Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win; const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1; const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1; const QuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info(); const QuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info(); const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset); const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale); // Clear X Dimension on execution window as we handle manually non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1)); Iterator broadcast_input(broadcast_tensor, broadcast_win); Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto non_broadcast_input_ptr = reinterpret_cast(non_broadcast_input.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); const uint8_t broadcast_value = *reinterpret_cast(broadcast_input.ptr()); const float32x4x4_t broadcast_vector = dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale); int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr, voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2); for (; x < window_end_x; ++x) { const float afs = scvt_f32_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo.scale, non_broadcast_qinfo.offset); const float bfs = scvt_f32_qasymm8(broadcast_value, broadcast_qinfo.scale, broadcast_qinfo.offset); *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, out->info()->quantization_info()); } }, broadcast_input, non_broadcast_input, output); } else { // Input1 quantization info const int32x4_t voffset1 = vdupq_n_s32(in1->info()->quantization_info().offset); const float32x4_t vscale1 = vdupq_n_f32(in1->info()->quantization_info().scale); // Input2 quantization info const int32x4_t voffset2 = vdupq_n_s32(in2->info()->quantization_info().offset); const float32x4_t vscale2 = vdupq_n_f32(in2->info()->quantization_info().scale); // Clear X Dimension on execution window as we handle manually input1_win.set(Window::DimX, Window::Dimension(0, 1, 1)); input2_win.set(Window::DimX, Window::Dimension(0, 1, 1)); const QuantizationInfo input1_qinfo = in1->info()->quantization_info(); const QuantizationInfo input2_qinfo = in2->info()->quantization_info(); Iterator input1(in1, input1_win); Iterator input2(in2, input2_win); Iterator output(out, win); execute_window_loop( win, [&](const Coordinates &) { const auto input1_ptr = reinterpret_cast(input1.ptr()); const auto input2_ptr = reinterpret_cast(input2.ptr()); const auto output_ptr = reinterpret_cast(output.ptr()); int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2, vscale1, vscale2, voffseto, invvscaleo); for (; x < window_end_x; ++x) { const float afs = scvt_f32_qasymm8(*(input1_ptr + x), input1_qinfo.scale, input1_qinfo.offset); const float bfs = scvt_f32_qasymm8(*(input2_ptr + x), input2_qinfo.scale, input2_qinfo.offset); *(output_ptr + x) = (*scalar_func)(afs, bfs, out->info()->quantization_info()); } }, input1, input2, output); } } void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float (*scalar_func)(const float &, const float &), int (*broadcast_func)(int, int, int, const float *, const float &, float *, const bool), int (*neon_func)(int, int, int, const float *, const float *, float *)) { elementwise_op_templ(in1, in2, out, window, scalar_func, broadcast_func, neon_func); } void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, uint8_t (*scalar_func)(const uint8_t &, const uint8_t &), int (*broadcast_func)(int, int, int, const uint8_t *, const uint8_t &, uint8_t *, const bool), int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *)) { elementwise_op_templ(in1, in2, out, window, scalar_func, broadcast_func, neon_func); } } // namespace arm_compute