/* * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved * Copyright (c) 2016-2018 ARM Limited. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "arm_compute/core/CL/kernels/CLSquaredDifferenceKernel.h" #include "arm_compute/core/CL/CLHelpers.h" #include "arm_compute/core/CL/CLKernelLibraryEx.h" #include "arm_compute/core/CL/ICLTensor.h" using namespace arm_compute; namespace { constexpr unsigned int num_elems_processed_per_iteration = 16; Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output) { const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape()); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible"); // Validate in case of configured output if (output->total_size() > 0) { ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32); ARM_COMPUTE_RETURN_ERROR_ON_MSG( detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output"); } return Status{}; } } // namespace CLSquaredDifferenceKernel::CLSquaredDifferenceKernel() : _input1(nullptr), _input2(nullptr), _output(nullptr) { } void CLSquaredDifferenceKernel::configure(const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output) { ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2); ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output); ARM_COMPUTE_ERROR_THROW_ON(validate(input1->info(), input2->info(), output->info())); _input1 = input1; _input2 = input2; _output = output; // Create kernel std::set build_opts; build_opts.emplace(("-DDATA_TYPE=" + get_cl_type_from_data_type(input1->info()->data_type()))); build_opts.emplace( ("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration))); _kernel = static_cast( CLKernelLibraryEx::get().create_kernel("squared_difference", build_opts)); const std::pair broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info()); const TensorShape &out_shape = broadcast_pair.first; const ValidRegion &valid_region = broadcast_pair.second; // Auto initialize output if not initialized { set_shape_if_empty(*output->info(), out_shape); if (input1->info()->data_type() == DataType::F16 && input2->info()->data_type() == DataType::F16) { set_format_if_unknown(*output->info(), Format::F16); } else if (input1->info()->data_type() == DataType::F32 || input2->info()->data_type() == DataType::F32) { set_format_if_unknown(*output->info(), Format::F32); } } Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration)); Window win_input1 = win.broadcast_if_dimension_le_one(*input1->info()); Window win_input2 = win.broadcast_if_dimension_le_one(*input2->info()); AccessWindowHorizontal input1_access(input1->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal input2_access(input2->info(), 0, num_elems_processed_per_iteration); AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration); bool window_changed = update_window_and_padding(win_input1, input1_access) || update_window_and_padding(win_input2, input2_access) || update_window_and_padding(win, output_access); output_access.set_valid_region(win, valid_region); ICLKernel::configure_internal(win); } void CLSquaredDifferenceKernel::run(const Window &window, cl::CommandQueue &queue) { ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window); const TensorShape &in_shape1 = _input1->info()->tensor_shape(); const TensorShape &in_shape2 = _input2->info()->tensor_shape(); const TensorShape &out_shape = _output->info()->tensor_shape(); bool can_collapse = true; if (std::min(in_shape1.total_size(), in_shape2.total_size()) > 1) { can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ); for (size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++) { can_collapse = (in_shape1[d] == in_shape2[d]); } } bool has_collapsed = false; Window collapsed = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window; const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1; const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2; Window slice = collapsed.first_slice_window_3D(); Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed); Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed); do { unsigned int idx = 0; add_3D_tensor_argument(idx, _input1, slice_input1); add_3D_tensor_argument(idx, _input2, slice_input2); add_3D_tensor_argument(idx, _output, slice); enqueue(queue, *this, slice); collapsed.slide_window_slice_3D(slice_input1); collapsed.slide_window_slice_3D(slice_input2); } while (collapsed.slide_window_slice_3D(slice)); } BorderSize CLSquaredDifferenceKernel::border_size() const { const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0)); const unsigned int border = std::min(num_elems_processed_per_iteration - 1U, replicateSize); return BorderSize(0, border, 0, 0); }