/* * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "kernels/InstanceNorm.h" #include "kernels/Utils.h" #include #include namespace luci_interpreter { namespace kernels { InstanceNorm::InstanceNorm(const Tensor *input, const Tensor *gamma, const Tensor *beta, Tensor *output, const InstanceNormParams ¶ms) : KernelWithParams({input, gamma, beta}, {output}, params) { } void InstanceNorm::configure() { LUCI_INTERPRETER_CHECK(input()->shape().num_dims() == 4); LUCI_INTERPRETER_CHECK(input()->element_type() == output()->element_type()); LUCI_INTERPRETER_CHECK(gamma()->element_type() == input()->element_type()); LUCI_INTERPRETER_CHECK(beta()->element_type() == input()->element_type()); output()->resize(input()->shape()); } void InstanceNorm::execute() const { switch (input()->element_type()) { case DataType::FLOAT32: evalFloat(); break; default: throw std::runtime_error("Unsupported type."); } } void InstanceNorm::evalFloat() const { float activation_min, activation_max; calculateActivationRange(params().activation, &activation_min, &activation_max); auto input_shape = getTensorShape(input()); auto output_shape = getTensorShape(output()); const int32_t batches = tflite::MatchingDim(input_shape, 0, output_shape, 0); const int32_t heights = tflite::MatchingDim(input_shape, 1, output_shape, 1); const int32_t widths = tflite::MatchingDim(input_shape, 2, output_shape, 2); const int32_t channels = tflite::MatchingDim(input_shape, 3, output_shape, 3); const float *input_data = getTensorData(input()); const float *gamma_data = getTensorData(gamma()); const float *beta_data = getTensorData(beta()); float *output_data = getTensorData(output()); for (int32_t batch = 0; batch < batches; batch++) { for (int32_t channel = 0; channel < channels; channel++) { double sum = 0.0f; double square_sum = 0.0f; int32_t size = heights * widths; for (int32_t height = 0; height < heights; height++) { for (int32_t width = 0; width < widths; width++) { double input_val = input_data[tflite::Offset(input_shape, batch, height, width, channel)]; sum += input_val; square_sum += (input_val * input_val); } } double mean = sum / size; double var = square_sum / size - mean * mean; double gamma = gamma_data[channel]; double beta = beta_data[channel]; double a = gamma / (std::sqrt(var + params().epsilon)); double b = -mean * a + beta; for (int32_t height = 0; height < heights; height++) { for (int32_t width = 0; width < widths; width++) { double input_value = input_data[tflite::Offset(output_shape, batch, height, width, channel)]; double output_value = input_value * a + b; output_data[tflite::Offset(output_shape, batch, height, width, channel)] = tflite::ActivationFunctionWithMinMax((float)output_value, activation_min, activation_max); } } } } } } // namespace kernels } // namespace luci_interpreter