summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h110
1 files changed, 110 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h b/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h
new file mode 100644
index 000000000..cf5ec449b
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU_Structs.h
@@ -0,0 +1,110 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/*
+ * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h
+ * -- SuperLU routine (version 4.1) --
+ * Univ. of California Berkeley, Xerox Palo Alto Research Center,
+ * and Lawrence Berkeley National Lab.
+ * November, 2010
+ *
+ * Global data structures used in LU factorization -
+ *
+ * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
+ * (xsup,supno): supno[i] is the supernode no to which i belongs;
+ * xsup(s) points to the beginning of the s-th supernode.
+ * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
+ * xsup 0 1 2 4 7 12
+ * Note: dfs will be performed on supernode rep. relative to the new
+ * row pivoting ordering
+ *
+ * (xlsub,lsub): lsub[*] contains the compressed subscript of
+ * rectangular supernodes; xlsub[j] points to the starting
+ * location of the j-th column in lsub[*]. Note that xlsub
+ * is indexed by column.
+ * Storage: original row subscripts
+ *
+ * During the course of sparse LU factorization, we also use
+ * (xlsub,lsub) for the purpose of symmetric pruning. For each
+ * supernode {s,s+1,...,t=s+r} with first column s and last
+ * column t, the subscript set
+ * lsub[j], j=xlsub[s], .., xlsub[s+1]-1
+ * is the structure of column s (i.e. structure of this supernode).
+ * It is used for the storage of numerical values.
+ * Furthermore,
+ * lsub[j], j=xlsub[t], .., xlsub[t+1]-1
+ * is the structure of the last column t of this supernode.
+ * It is for the purpose of symmetric pruning. Therefore, the
+ * structural subscripts can be rearranged without making physical
+ * interchanges among the numerical values.
+ *
+ * However, if the supernode has only one column, then we
+ * only keep one set of subscripts. For any subscript interchange
+ * performed, similar interchange must be done on the numerical
+ * values.
+ *
+ * The last column structures (for pruning) will be removed
+ * after the numercial LU factorization phase.
+ *
+ * (xlusup,lusup): lusup[*] contains the numerical values of the
+ * rectangular supernodes; xlusup[j] points to the starting
+ * location of the j-th column in storage vector lusup[*]
+ * Note: xlusup is indexed by column.
+ * Each rectangular supernode is stored by column-major
+ * scheme, consistent with Fortran 2-dim array storage.
+ *
+ * (xusub,ucol,usub): ucol[*] stores the numerical values of
+ * U-columns outside the rectangular supernodes. The row
+ * subscript of nonzero ucol[k] is stored in usub[k].
+ * xusub[i] points to the starting location of column i in ucol.
+ * Storage: new row subscripts; that is subscripts of PA.
+ */
+
+#ifndef EIGEN_LU_STRUCTS
+#define EIGEN_LU_STRUCTS
+namespace Eigen {
+namespace internal {
+
+typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType;
+
+template <typename IndexVector, typename ScalarVector>
+struct LU_GlobalLU_t {
+ typedef typename IndexVector::Scalar StorageIndex;
+ IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
+ IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
+ ScalarVector lusup; // nonzero values of L ordered by columns
+ IndexVector lsub; // Compressed row indices of L rectangular supernodes.
+ IndexVector xlusup; // pointers to the beginning of each column in lusup
+ IndexVector xlsub; // pointers to the beginning of each column in lsub
+ Index nzlmax; // Current max size of lsub
+ Index nzlumax; // Current max size of lusup
+ ScalarVector ucol; // nonzero values of U ordered by columns
+ IndexVector usub; // row indices of U columns in ucol
+ IndexVector xusub; // Pointers to the beginning of each column of U in ucol
+ Index nzumax; // Current max size of ucol
+ Index n; // Number of columns in the matrix
+ Index num_expansions;
+};
+
+// Values to set for performance
+struct perfvalues {
+ Index panel_size; // a panel consists of at most <panel_size> consecutive columns
+ Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
+ // in a subtree of the elimination tree is less than relax, this subtree is considered
+ // as one supernode regardless of the row structures of those columns
+ Index maxsuper; // The maximum size for a supernode in complete LU
+ Index rowblk; // The minimum row dimension for 2-D blocking to be used;
+ Index colblk; // The minimum column dimension for 2-D blocking to be used;
+ Index fillfactor; // The estimated fills factors for L and U, compared with A
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+#endif // EIGEN_LU_STRUCTS