summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h775
1 files changed, 775 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h b/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h
new file mode 100644
index 000000000..f883ab383
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/SparseLU/SparseLU.h
@@ -0,0 +1,775 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#ifndef EIGEN_SPARSE_LU_H
+#define EIGEN_SPARSE_LU_H
+
+namespace Eigen {
+
+template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
+template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
+template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
+
+/** \ingroup SparseLU_Module
+ * \class SparseLU
+ *
+ * \brief Sparse supernodal LU factorization for general matrices
+ *
+ * This class implements the supernodal LU factorization for general matrices.
+ * It uses the main techniques from the sequential SuperLU package
+ * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
+ * and complex arithmetics with single and double precision, depending on the
+ * scalar type of your input matrix.
+ * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
+ * It benefits directly from the built-in high-performant Eigen BLAS routines.
+ * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
+ * enable a better optimization from the compiler. For best performance,
+ * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
+ *
+ * An important parameter of this class is the ordering method. It is used to reorder the columns
+ * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
+ * numerical factorization. The cheapest method available is COLAMD.
+ * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
+ * built-in and external ordering methods.
+ *
+ * Simple example with key steps
+ * \code
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double, ColMajor> A;
+ * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
+ * // fill A and b;
+ * // Compute the ordering permutation vector from the structural pattern of A
+ * solver.analyzePattern(A);
+ * // Compute the numerical factorization
+ * solver.factorize(A);
+ * //Use the factors to solve the linear system
+ * x = solver.solve(b);
+ * \endcode
+ *
+ * \warning The input matrix A should be in a \b compressed and \b column-major form.
+ * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
+ *
+ * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
+ * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
+ * If this is the case for your matrices, you can try the basic scaling method at
+ * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
+ *
+ * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
+ * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
+ *
+ * \implsparsesolverconcept
+ *
+ * \sa \ref TutorialSparseSolverConcept
+ * \sa \ref OrderingMethods_Module
+ */
+template <typename _MatrixType, typename _OrderingType>
+class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
+{
+ protected:
+ typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
+ using APIBase::m_isInitialized;
+ public:
+ using APIBase::_solve_impl;
+
+ typedef _MatrixType MatrixType;
+ typedef _OrderingType OrderingType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
+ typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
+ typedef Matrix<Scalar,Dynamic,1> ScalarVector;
+ typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
+ typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
+ typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
+
+ enum {
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ public:
+ SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
+ {
+ initperfvalues();
+ }
+ explicit SparseLU(const MatrixType& matrix)
+ : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
+ {
+ initperfvalues();
+ compute(matrix);
+ }
+
+ ~SparseLU()
+ {
+ // Free all explicit dynamic pointers
+ }
+
+ void analyzePattern (const MatrixType& matrix);
+ void factorize (const MatrixType& matrix);
+ void simplicialfactorize(const MatrixType& matrix);
+
+ /**
+ * Compute the symbolic and numeric factorization of the input sparse matrix.
+ * The input matrix should be in column-major storage.
+ */
+ void compute (const MatrixType& matrix)
+ {
+ // Analyze
+ analyzePattern(matrix);
+ //Factorize
+ factorize(matrix);
+ }
+
+ inline Index rows() const { return m_mat.rows(); }
+ inline Index cols() const { return m_mat.cols(); }
+ /** Indicate that the pattern of the input matrix is symmetric */
+ void isSymmetric(bool sym)
+ {
+ m_symmetricmode = sym;
+ }
+
+ /** \returns an expression of the matrix L, internally stored as supernodes
+ * The only operation available with this expression is the triangular solve
+ * \code
+ * y = b; matrixL().solveInPlace(y);
+ * \endcode
+ */
+ SparseLUMatrixLReturnType<SCMatrix> matrixL() const
+ {
+ return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
+ }
+ /** \returns an expression of the matrix U,
+ * The only operation available with this expression is the triangular solve
+ * \code
+ * y = b; matrixU().solveInPlace(y);
+ * \endcode
+ */
+ SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
+ {
+ return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
+ }
+
+ /**
+ * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
+ * \sa colsPermutation()
+ */
+ inline const PermutationType& rowsPermutation() const
+ {
+ return m_perm_r;
+ }
+ /**
+ * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
+ * \sa rowsPermutation()
+ */
+ inline const PermutationType& colsPermutation() const
+ {
+ return m_perm_c;
+ }
+ /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
+ void setPivotThreshold(const RealScalar& thresh)
+ {
+ m_diagpivotthresh = thresh;
+ }
+
+#ifdef EIGEN_PARSED_BY_DOXYGEN
+ /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
+ *
+ * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
+#endif // EIGEN_PARSED_BY_DOXYGEN
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
+ * \c InvalidInput if the input matrix is invalid
+ *
+ * \sa iparm()
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_info;
+ }
+
+ /**
+ * \returns A string describing the type of error
+ */
+ std::string lastErrorMessage() const
+ {
+ return m_lastError;
+ }
+
+ template<typename Rhs, typename Dest>
+ bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
+ {
+ Dest& X(X_base.derived());
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
+ THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+
+ // Permute the right hand side to form X = Pr*B
+ // on return, X is overwritten by the computed solution
+ X.resize(B.rows(),B.cols());
+
+ // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
+ for(Index j = 0; j < B.cols(); ++j)
+ X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
+
+ //Forward substitution with L
+ this->matrixL().solveInPlace(X);
+ this->matrixU().solveInPlace(X);
+
+ // Permute back the solution
+ for (Index j = 0; j < B.cols(); ++j)
+ X.col(j) = colsPermutation().inverse() * X.col(j);
+
+ return true;
+ }
+
+ /**
+ * \returns the absolute value of the determinant of the matrix of which
+ * *this is the QR decomposition.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), signDeterminant()
+ */
+ Scalar absDeterminant()
+ {
+ using std::abs;
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
+ // Initialize with the determinant of the row matrix
+ Scalar det = Scalar(1.);
+ // Note that the diagonal blocks of U are stored in supernodes,
+ // which are available in the L part :)
+ for (Index j = 0; j < this->cols(); ++j)
+ {
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
+ {
+ if(it.index() == j)
+ {
+ det *= abs(it.value());
+ break;
+ }
+ }
+ }
+ return det;
+ }
+
+ /** \returns the natural log of the absolute value of the determinant of the matrix
+ * of which **this is the QR decomposition
+ *
+ * \note This method is useful to work around the risk of overflow/underflow that's
+ * inherent to the determinant computation.
+ *
+ * \sa absDeterminant(), signDeterminant()
+ */
+ Scalar logAbsDeterminant() const
+ {
+ using std::log;
+ using std::abs;
+
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
+ Scalar det = Scalar(0.);
+ for (Index j = 0; j < this->cols(); ++j)
+ {
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
+ {
+ if(it.row() < j) continue;
+ if(it.row() == j)
+ {
+ det += log(abs(it.value()));
+ break;
+ }
+ }
+ }
+ return det;
+ }
+
+ /** \returns A number representing the sign of the determinant
+ *
+ * \sa absDeterminant(), logAbsDeterminant()
+ */
+ Scalar signDeterminant()
+ {
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
+ // Initialize with the determinant of the row matrix
+ Index det = 1;
+ // Note that the diagonal blocks of U are stored in supernodes,
+ // which are available in the L part :)
+ for (Index j = 0; j < this->cols(); ++j)
+ {
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
+ {
+ if(it.index() == j)
+ {
+ if(it.value()<0)
+ det = -det;
+ else if(it.value()==0)
+ return 0;
+ break;
+ }
+ }
+ }
+ return det * m_detPermR * m_detPermC;
+ }
+
+ /** \returns The determinant of the matrix.
+ *
+ * \sa absDeterminant(), logAbsDeterminant()
+ */
+ Scalar determinant()
+ {
+ eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
+ // Initialize with the determinant of the row matrix
+ Scalar det = Scalar(1.);
+ // Note that the diagonal blocks of U are stored in supernodes,
+ // which are available in the L part :)
+ for (Index j = 0; j < this->cols(); ++j)
+ {
+ for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
+ {
+ if(it.index() == j)
+ {
+ det *= it.value();
+ break;
+ }
+ }
+ }
+ return (m_detPermR * m_detPermC) > 0 ? det : -det;
+ }
+
+ protected:
+ // Functions
+ void initperfvalues()
+ {
+ m_perfv.panel_size = 16;
+ m_perfv.relax = 1;
+ m_perfv.maxsuper = 128;
+ m_perfv.rowblk = 16;
+ m_perfv.colblk = 8;
+ m_perfv.fillfactor = 20;
+ }
+
+ // Variables
+ mutable ComputationInfo m_info;
+ bool m_factorizationIsOk;
+ bool m_analysisIsOk;
+ std::string m_lastError;
+ NCMatrix m_mat; // The input (permuted ) matrix
+ SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
+ MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
+ PermutationType m_perm_c; // Column permutation
+ PermutationType m_perm_r ; // Row permutation
+ IndexVector m_etree; // Column elimination tree
+
+ typename Base::GlobalLU_t m_glu;
+
+ // SparseLU options
+ bool m_symmetricmode;
+ // values for performance
+ internal::perfvalues m_perfv;
+ RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
+ Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
+ Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
+ private:
+ // Disable copy constructor
+ SparseLU (const SparseLU& );
+
+}; // End class SparseLU
+
+
+
+// Functions needed by the anaysis phase
+/**
+ * Compute the column permutation to minimize the fill-in
+ *
+ * - Apply this permutation to the input matrix -
+ *
+ * - Compute the column elimination tree on the permuted matrix
+ *
+ * - Postorder the elimination tree and the column permutation
+ *
+ */
+template <typename MatrixType, typename OrderingType>
+void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
+{
+
+ //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
+
+ // Firstly, copy the whole input matrix.
+ m_mat = mat;
+
+ // Compute fill-in ordering
+ OrderingType ord;
+ ord(m_mat,m_perm_c);
+
+ // Apply the permutation to the column of the input matrix
+ if (m_perm_c.size())
+ {
+ m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
+ // Then, permute only the column pointers
+ ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
+
+ // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
+ if(!mat.isCompressed())
+ IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
+
+ // Apply the permutation and compute the nnz per column.
+ for (Index i = 0; i < mat.cols(); i++)
+ {
+ m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
+ m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
+ }
+ }
+
+ // Compute the column elimination tree of the permuted matrix
+ IndexVector firstRowElt;
+ internal::coletree(m_mat, m_etree,firstRowElt);
+
+ // In symmetric mode, do not do postorder here
+ if (!m_symmetricmode) {
+ IndexVector post, iwork;
+ // Post order etree
+ internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
+
+
+ // Renumber etree in postorder
+ Index m = m_mat.cols();
+ iwork.resize(m+1);
+ for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
+ m_etree = iwork;
+
+ // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
+ PermutationType post_perm(m);
+ for (Index i = 0; i < m; i++)
+ post_perm.indices()(i) = post(i);
+
+ // Combine the two permutations : postorder the permutation for future use
+ if(m_perm_c.size()) {
+ m_perm_c = post_perm * m_perm_c;
+ }
+
+ } // end postordering
+
+ m_analysisIsOk = true;
+}
+
+// Functions needed by the numerical factorization phase
+
+
+/**
+ * - Numerical factorization
+ * - Interleaved with the symbolic factorization
+ * On exit, info is
+ *
+ * = 0: successful factorization
+ *
+ * > 0: if info = i, and i is
+ *
+ * <= A->ncol: U(i,i) is exactly zero. The factorization has
+ * been completed, but the factor U is exactly singular,
+ * and division by zero will occur if it is used to solve a
+ * system of equations.
+ *
+ * > A->ncol: number of bytes allocated when memory allocation
+ * failure occurred, plus A->ncol. If lwork = -1, it is
+ * the estimated amount of space needed, plus A->ncol.
+ */
+template <typename MatrixType, typename OrderingType>
+void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
+{
+ using internal::emptyIdxLU;
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+ eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
+
+ typedef typename IndexVector::Scalar StorageIndex;
+
+ m_isInitialized = true;
+
+
+ // Apply the column permutation computed in analyzepattern()
+ // m_mat = matrix * m_perm_c.inverse();
+ m_mat = matrix;
+ if (m_perm_c.size())
+ {
+ m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
+ //Then, permute only the column pointers
+ const StorageIndex * outerIndexPtr;
+ if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
+ else
+ {
+ StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
+ for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
+ outerIndexPtr = outerIndexPtr_t;
+ }
+ for (Index i = 0; i < matrix.cols(); i++)
+ {
+ m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
+ m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
+ }
+ if(!matrix.isCompressed()) delete[] outerIndexPtr;
+ }
+ else
+ { //FIXME This should not be needed if the empty permutation is handled transparently
+ m_perm_c.resize(matrix.cols());
+ for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
+ }
+
+ Index m = m_mat.rows();
+ Index n = m_mat.cols();
+ Index nnz = m_mat.nonZeros();
+ Index maxpanel = m_perfv.panel_size * m;
+ // Allocate working storage common to the factor routines
+ Index lwork = 0;
+ Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
+ if (info)
+ {
+ m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
+ m_factorizationIsOk = false;
+ return ;
+ }
+
+ // Set up pointers for integer working arrays
+ IndexVector segrep(m); segrep.setZero();
+ IndexVector parent(m); parent.setZero();
+ IndexVector xplore(m); xplore.setZero();
+ IndexVector repfnz(maxpanel);
+ IndexVector panel_lsub(maxpanel);
+ IndexVector xprune(n); xprune.setZero();
+ IndexVector marker(m*internal::LUNoMarker); marker.setZero();
+
+ repfnz.setConstant(-1);
+ panel_lsub.setConstant(-1);
+
+ // Set up pointers for scalar working arrays
+ ScalarVector dense;
+ dense.setZero(maxpanel);
+ ScalarVector tempv;
+ tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
+
+ // Compute the inverse of perm_c
+ PermutationType iperm_c(m_perm_c.inverse());
+
+ // Identify initial relaxed snodes
+ IndexVector relax_end(n);
+ if ( m_symmetricmode == true )
+ Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
+ else
+ Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
+
+
+ m_perm_r.resize(m);
+ m_perm_r.indices().setConstant(-1);
+ marker.setConstant(-1);
+ m_detPermR = 1; // Record the determinant of the row permutation
+
+ m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
+ m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
+
+ // Work on one 'panel' at a time. A panel is one of the following :
+ // (a) a relaxed supernode at the bottom of the etree, or
+ // (b) panel_size contiguous columns, <panel_size> defined by the user
+ Index jcol;
+ IndexVector panel_histo(n);
+ Index pivrow; // Pivotal row number in the original row matrix
+ Index nseg1; // Number of segments in U-column above panel row jcol
+ Index nseg; // Number of segments in each U-column
+ Index irep;
+ Index i, k, jj;
+ for (jcol = 0; jcol < n; )
+ {
+ // Adjust panel size so that a panel won't overlap with the next relaxed snode.
+ Index panel_size = m_perfv.panel_size; // upper bound on panel width
+ for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
+ {
+ if (relax_end(k) != emptyIdxLU)
+ {
+ panel_size = k - jcol;
+ break;
+ }
+ }
+ if (k == n)
+ panel_size = n - jcol;
+
+ // Symbolic outer factorization on a panel of columns
+ Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
+
+ // Numeric sup-panel updates in topological order
+ Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
+
+ // Sparse LU within the panel, and below the panel diagonal
+ for ( jj = jcol; jj< jcol + panel_size; jj++)
+ {
+ k = (jj - jcol) * m; // Column index for w-wide arrays
+
+ nseg = nseg1; // begin after all the panel segments
+ //Depth-first-search for the current column
+ VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
+ VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
+ info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
+ if ( info )
+ {
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
+ m_info = NumericalIssue;
+ m_factorizationIsOk = false;
+ return;
+ }
+ // Numeric updates to this column
+ VectorBlock<ScalarVector> dense_k(dense, k, m);
+ VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
+ info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
+ if ( info )
+ {
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
+ m_info = NumericalIssue;
+ m_factorizationIsOk = false;
+ return;
+ }
+
+ // Copy the U-segments to ucol(*)
+ info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
+ if ( info )
+ {
+ m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
+ m_info = NumericalIssue;
+ m_factorizationIsOk = false;
+ return;
+ }
+
+ // Form the L-segment
+ info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
+ if ( info )
+ {
+ m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
+ std::ostringstream returnInfo;
+ returnInfo << info;
+ m_lastError += returnInfo.str();
+ m_info = NumericalIssue;
+ m_factorizationIsOk = false;
+ return;
+ }
+
+ // Update the determinant of the row permutation matrix
+ // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
+ if (pivrow != jj) m_detPermR = -m_detPermR;
+
+ // Prune columns (0:jj-1) using column jj
+ Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
+
+ // Reset repfnz for this column
+ for (i = 0; i < nseg; i++)
+ {
+ irep = segrep(i);
+ repfnz_k(irep) = emptyIdxLU;
+ }
+ } // end SparseLU within the panel
+ jcol += panel_size; // Move to the next panel
+ } // end for -- end elimination
+
+ m_detPermR = m_perm_r.determinant();
+ m_detPermC = m_perm_c.determinant();
+
+ // Count the number of nonzeros in factors
+ Base::countnz(n, m_nnzL, m_nnzU, m_glu);
+ // Apply permutation to the L subscripts
+ Base::fixupL(n, m_perm_r.indices(), m_glu);
+
+ // Create supernode matrix L
+ m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
+ // Create the column major upper sparse matrix U;
+ new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
+
+ m_info = Success;
+ m_factorizationIsOk = true;
+}
+
+template<typename MappedSupernodalType>
+struct SparseLUMatrixLReturnType : internal::no_assignment_operator
+{
+ typedef typename MappedSupernodalType::Scalar Scalar;
+ explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
+ { }
+ Index rows() { return m_mapL.rows(); }
+ Index cols() { return m_mapL.cols(); }
+ template<typename Dest>
+ void solveInPlace( MatrixBase<Dest> &X) const
+ {
+ m_mapL.solveInPlace(X);
+ }
+ const MappedSupernodalType& m_mapL;
+};
+
+template<typename MatrixLType, typename MatrixUType>
+struct SparseLUMatrixUReturnType : internal::no_assignment_operator
+{
+ typedef typename MatrixLType::Scalar Scalar;
+ SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
+ : m_mapL(mapL),m_mapU(mapU)
+ { }
+ Index rows() { return m_mapL.rows(); }
+ Index cols() { return m_mapL.cols(); }
+
+ template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
+ {
+ Index nrhs = X.cols();
+ Index n = X.rows();
+ // Backward solve with U
+ for (Index k = m_mapL.nsuper(); k >= 0; k--)
+ {
+ Index fsupc = m_mapL.supToCol()[k];
+ Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
+ Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
+ Index luptr = m_mapL.colIndexPtr()[fsupc];
+
+ if (nsupc == 1)
+ {
+ for (Index j = 0; j < nrhs; j++)
+ {
+ X(fsupc, j) /= m_mapL.valuePtr()[luptr];
+ }
+ }
+ else
+ {
+ Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
+ Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
+ U = A.template triangularView<Upper>().solve(U);
+ }
+
+ for (Index j = 0; j < nrhs; ++j)
+ {
+ for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
+ {
+ typename MatrixUType::InnerIterator it(m_mapU, jcol);
+ for ( ; it; ++it)
+ {
+ Index irow = it.index();
+ X(irow, j) -= X(jcol, j) * it.value();
+ }
+ }
+ }
+ } // End For U-solve
+ }
+ const MatrixLType& m_mapL;
+ const MatrixUType& m_mapU;
+};
+
+} // End namespace Eigen
+
+#endif