summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h1403
1 files changed, 0 insertions, 1403 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h b/runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h
deleted file mode 100644
index 323c2323b..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/SparseCore/SparseMatrix.h
+++ /dev/null
@@ -1,1403 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSEMATRIX_H
-#define EIGEN_SPARSEMATRIX_H
-
-namespace Eigen {
-
-/** \ingroup SparseCore_Module
- *
- * \class SparseMatrix
- *
- * \brief A versatible sparse matrix representation
- *
- * This class implements a more versatile variants of the common \em compressed row/column storage format.
- * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
- * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
- * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
- * can be done with limited memory reallocation and copies.
- *
- * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
- * compatible with many library.
- *
- * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
- *
- * \tparam _Scalar the scalar type, i.e. the type of the coefficients
- * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
- * is ColMajor or RowMajor. The default is 0 which means column-major.
- * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
- *
- * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
- * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
- * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
- *
- * This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
- */
-
-namespace internal {
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef _Scalar Scalar;
- typedef _StorageIndex StorageIndex;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = Dynamic,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic,
- Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
- SupportedAccessPatterns = InnerRandomAccessPattern
- };
-};
-
-template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
-struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
-{
- typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
- typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
- typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
-
- typedef _Scalar Scalar;
- typedef Dense StorageKind;
- typedef _StorageIndex StorageIndex;
- typedef MatrixXpr XprKind;
-
- enum {
- RowsAtCompileTime = Dynamic,
- ColsAtCompileTime = 1,
- MaxRowsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = 1,
- Flags = LvalueBit
- };
-};
-
-template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
-struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
- : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
-{
- enum {
- Flags = 0
- };
-};
-
-} // end namespace internal
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-class SparseMatrix
- : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
-{
- typedef SparseCompressedBase<SparseMatrix> Base;
- using Base::convert_index;
- friend class SparseVector<_Scalar,0,_StorageIndex>;
- public:
- using Base::isCompressed;
- using Base::nonZeros;
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
- using Base::operator+=;
- using Base::operator-=;
-
- typedef MappedSparseMatrix<Scalar,Flags> Map;
- typedef Diagonal<SparseMatrix> DiagonalReturnType;
- typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
- typedef typename Base::InnerIterator InnerIterator;
- typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
-
-
- using Base::IsRowMajor;
- typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
- enum {
- Options = _Options
- };
-
- typedef typename Base::IndexVector IndexVector;
- typedef typename Base::ScalarVector ScalarVector;
- protected:
- typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
-
- Index m_outerSize;
- Index m_innerSize;
- StorageIndex* m_outerIndex;
- StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed
- Storage m_data;
-
- public:
-
- /** \returns the number of rows of the matrix */
- inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
- /** \returns the number of columns of the matrix */
- inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
-
- /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
- inline Index innerSize() const { return m_innerSize; }
- /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
- inline Index outerSize() const { return m_outerSize; }
-
- /** \returns a const pointer to the array of values.
- * This function is aimed at interoperability with other libraries.
- * \sa innerIndexPtr(), outerIndexPtr() */
- inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
- /** \returns a non-const pointer to the array of values.
- * This function is aimed at interoperability with other libraries.
- * \sa innerIndexPtr(), outerIndexPtr() */
- inline Scalar* valuePtr() { return m_data.valuePtr(); }
-
- /** \returns a const pointer to the array of inner indices.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), outerIndexPtr() */
- inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
- /** \returns a non-const pointer to the array of inner indices.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), outerIndexPtr() */
- inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
-
- /** \returns a const pointer to the array of the starting positions of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), innerIndexPtr() */
- inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
- /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \sa valuePtr(), innerIndexPtr() */
- inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
-
- /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \warning it returns the null pointer 0 in compressed mode */
- inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
- /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
- * This function is aimed at interoperability with other libraries.
- * \warning it returns the null pointer 0 in compressed mode */
- inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
-
- /** \internal */
- inline Storage& data() { return m_data; }
- /** \internal */
- inline const Storage& data() const { return m_data; }
-
- /** \returns the value of the matrix at position \a i, \a j
- * This function returns Scalar(0) if the element is an explicit \em zero */
- inline Scalar coeff(Index row, Index col) const
- {
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
- Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
- return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
- }
-
- /** \returns a non-const reference to the value of the matrix at position \a i, \a j
- *
- * If the element does not exist then it is inserted via the insert(Index,Index) function
- * which itself turns the matrix into a non compressed form if that was not the case.
- *
- * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
- * function if the element does not already exist.
- */
- inline Scalar& coeffRef(Index row, Index col)
- {
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index start = m_outerIndex[outer];
- Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
- eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
- if(end<=start)
- return insert(row,col);
- const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
- if((p<end) && (m_data.index(p)==inner))
- return m_data.value(p);
- else
- return insert(row,col);
- }
-
- /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
- * The non zero coefficient must \b not already exist.
- *
- * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
- * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
- * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
- * inserted by increasing outer-indices.
- *
- * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
- * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
- *
- * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
- * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
- *
- */
- Scalar& insert(Index row, Index col);
-
- public:
-
- /** Removes all non zeros but keep allocated memory
- *
- * This function does not free the currently allocated memory. To release as much as memory as possible,
- * call \code mat.data().squeeze(); \endcode after resizing it.
- *
- * \sa resize(Index,Index), data()
- */
- inline void setZero()
- {
- m_data.clear();
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
- if(m_innerNonZeros)
- memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
- }
-
- /** Preallocates \a reserveSize non zeros.
- *
- * Precondition: the matrix must be in compressed mode. */
- inline void reserve(Index reserveSize)
- {
- eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
- m_data.reserve(reserveSize);
- }
-
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
- *
- * This function turns the matrix in non-compressed mode.
- *
- * The type \c SizesType must expose the following interface:
- \code
- typedef value_type;
- const value_type& operator[](i) const;
- \endcode
- * for \c i in the [0,this->outerSize()[ range.
- * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
- */
- template<class SizesType>
- inline void reserve(const SizesType& reserveSizes);
- #else
- template<class SizesType>
- inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
- #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
- typename
- #endif
- SizesType::value_type())
- {
- EIGEN_UNUSED_VARIABLE(enableif);
- reserveInnerVectors(reserveSizes);
- }
- #endif // EIGEN_PARSED_BY_DOXYGEN
- protected:
- template<class SizesType>
- inline void reserveInnerVectors(const SizesType& reserveSizes)
- {
- if(isCompressed())
- {
- Index totalReserveSize = 0;
- // turn the matrix into non-compressed mode
- m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
- if (!m_innerNonZeros) internal::throw_std_bad_alloc();
-
- // temporarily use m_innerSizes to hold the new starting points.
- StorageIndex* newOuterIndex = m_innerNonZeros;
-
- StorageIndex count = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- newOuterIndex[j] = count;
- count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
- totalReserveSize += reserveSizes[j];
- }
- m_data.reserve(totalReserveSize);
- StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
- for(Index j=m_outerSize-1; j>=0; --j)
- {
- StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
- for(Index i=innerNNZ-1; i>=0; --i)
- {
- m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
- m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
- }
- previousOuterIndex = m_outerIndex[j];
- m_outerIndex[j] = newOuterIndex[j];
- m_innerNonZeros[j] = innerNNZ;
- }
- m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
-
- m_data.resize(m_outerIndex[m_outerSize]);
- }
- else
- {
- StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
- if (!newOuterIndex) internal::throw_std_bad_alloc();
-
- StorageIndex count = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- newOuterIndex[j] = count;
- StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
- StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
- count += toReserve + m_innerNonZeros[j];
- }
- newOuterIndex[m_outerSize] = count;
-
- m_data.resize(count);
- for(Index j=m_outerSize-1; j>=0; --j)
- {
- Index offset = newOuterIndex[j] - m_outerIndex[j];
- if(offset>0)
- {
- StorageIndex innerNNZ = m_innerNonZeros[j];
- for(Index i=innerNNZ-1; i>=0; --i)
- {
- m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
- m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
- }
- }
- }
-
- std::swap(m_outerIndex, newOuterIndex);
- std::free(newOuterIndex);
- }
-
- }
- public:
-
- //--- low level purely coherent filling ---
-
- /** \internal
- * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
- * - the nonzero does not already exist
- * - the new coefficient is the last one according to the storage order
- *
- * Before filling a given inner vector you must call the statVec(Index) function.
- *
- * After an insertion session, you should call the finalize() function.
- *
- * \sa insert, insertBackByOuterInner, startVec */
- inline Scalar& insertBack(Index row, Index col)
- {
- return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
- }
-
- /** \internal
- * \sa insertBack, startVec */
- inline Scalar& insertBackByOuterInner(Index outer, Index inner)
- {
- eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
- eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(Scalar(0), inner);
- return m_data.value(p);
- }
-
- /** \internal
- * \warning use it only if you know what you are doing */
- inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
- {
- Index p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
- m_data.append(Scalar(0), inner);
- return m_data.value(p);
- }
-
- /** \internal
- * \sa insertBack, insertBackByOuterInner */
- inline void startVec(Index outer)
- {
- eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
- eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- /** \internal
- * Must be called after inserting a set of non zero entries using the low level compressed API.
- */
- inline void finalize()
- {
- if(isCompressed())
- {
- StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
- Index i = m_outerSize;
- // find the last filled column
- while (i>=0 && m_outerIndex[i]==0)
- --i;
- ++i;
- while (i<=m_outerSize)
- {
- m_outerIndex[i] = size;
- ++i;
- }
- }
- }
-
- //---
-
- template<typename InputIterators>
- void setFromTriplets(const InputIterators& begin, const InputIterators& end);
-
- template<typename InputIterators,typename DupFunctor>
- void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);
-
- void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }
-
- template<typename DupFunctor>
- void collapseDuplicates(DupFunctor dup_func = DupFunctor());
-
- //---
-
- /** \internal
- * same as insert(Index,Index) except that the indices are given relative to the storage order */
- Scalar& insertByOuterInner(Index j, Index i)
- {
- return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
- }
-
- /** Turns the matrix into the \em compressed format.
- */
- void makeCompressed()
- {
- if(isCompressed())
- return;
-
- eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
-
- Index oldStart = m_outerIndex[1];
- m_outerIndex[1] = m_innerNonZeros[0];
- for(Index j=1; j<m_outerSize; ++j)
- {
- Index nextOldStart = m_outerIndex[j+1];
- Index offset = oldStart - m_outerIndex[j];
- if(offset>0)
- {
- for(Index k=0; k<m_innerNonZeros[j]; ++k)
- {
- m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
- m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
- }
- }
- m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
- oldStart = nextOldStart;
- }
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- m_data.resize(m_outerIndex[m_outerSize]);
- m_data.squeeze();
- }
-
- /** Turns the matrix into the uncompressed mode */
- void uncompress()
- {
- if(m_innerNonZeros != 0)
- return;
- m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
- for (Index i = 0; i < m_outerSize; i++)
- {
- m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
- }
- }
-
- /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
- void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
- {
- prune(default_prunning_func(reference,epsilon));
- }
-
- /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
- * The functor type \a KeepFunc must implement the following function:
- * \code
- * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
- * \endcode
- * \sa prune(Scalar,RealScalar)
- */
- template<typename KeepFunc>
- void prune(const KeepFunc& keep = KeepFunc())
- {
- // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
- makeCompressed();
-
- StorageIndex k = 0;
- for(Index j=0; j<m_outerSize; ++j)
- {
- Index previousStart = m_outerIndex[j];
- m_outerIndex[j] = k;
- Index end = m_outerIndex[j+1];
- for(Index i=previousStart; i<end; ++i)
- {
- if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
- {
- m_data.value(k) = m_data.value(i);
- m_data.index(k) = m_data.index(i);
- ++k;
- }
- }
- }
- m_outerIndex[m_outerSize] = k;
- m_data.resize(k,0);
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
- *
- * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
- * and the storage of the out of bounds coefficients is kept and reserved.
- * Call makeCompressed() to pack the entries and squeeze extra memory.
- *
- * \sa reserve(), setZero(), makeCompressed()
- */
- void conservativeResize(Index rows, Index cols)
- {
- // No change
- if (this->rows() == rows && this->cols() == cols) return;
-
- // If one dimension is null, then there is nothing to be preserved
- if(rows==0 || cols==0) return resize(rows,cols);
-
- Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
- Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
- StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
-
- // Deals with inner non zeros
- if (m_innerNonZeros)
- {
- // Resize m_innerNonZeros
- StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
- if (!newInnerNonZeros) internal::throw_std_bad_alloc();
- m_innerNonZeros = newInnerNonZeros;
-
- for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
- m_innerNonZeros[i] = 0;
- }
- else if (innerChange < 0)
- {
- // Inner size decreased: allocate a new m_innerNonZeros
- m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
- if (!m_innerNonZeros) internal::throw_std_bad_alloc();
- for(Index i = 0; i < m_outerSize; i++)
- m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
- }
-
- // Change the m_innerNonZeros in case of a decrease of inner size
- if (m_innerNonZeros && innerChange < 0)
- {
- for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
- {
- StorageIndex &n = m_innerNonZeros[i];
- StorageIndex start = m_outerIndex[i];
- while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
- }
- }
-
- m_innerSize = newInnerSize;
-
- // Re-allocate outer index structure if necessary
- if (outerChange == 0)
- return;
-
- StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
- if (!newOuterIndex) internal::throw_std_bad_alloc();
- m_outerIndex = newOuterIndex;
- if (outerChange > 0)
- {
- StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
- for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
- m_outerIndex[i] = last;
- }
- m_outerSize += outerChange;
- }
-
- /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
- *
- * This function does not free the currently allocated memory. To release as much as memory as possible,
- * call \code mat.data().squeeze(); \endcode after resizing it.
- *
- * \sa reserve(), setZero()
- */
- void resize(Index rows, Index cols)
- {
- const Index outerSize = IsRowMajor ? rows : cols;
- m_innerSize = IsRowMajor ? cols : rows;
- m_data.clear();
- if (m_outerSize != outerSize || m_outerSize==0)
- {
- std::free(m_outerIndex);
- m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
- if (!m_outerIndex) internal::throw_std_bad_alloc();
-
- m_outerSize = outerSize;
- }
- if(m_innerNonZeros)
- {
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- }
- memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
- }
-
- /** \internal
- * Resize the nonzero vector to \a size */
- void resizeNonZeros(Index size)
- {
- m_data.resize(size);
- }
-
- /** \returns a const expression of the diagonal coefficients. */
- const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
-
- /** \returns a read-write expression of the diagonal coefficients.
- * \warning If the diagonal entries are written, then all diagonal
- * entries \b must already exist, otherwise an assertion will be raised.
- */
- DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
-
- /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
- inline SparseMatrix()
- : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- resize(0, 0);
- }
-
- /** Constructs a \a rows \c x \a cols empty matrix */
- inline SparseMatrix(Index rows, Index cols)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- resize(rows, cols);
- }
-
- /** Constructs a sparse matrix from the sparse expression \a other */
- template<typename OtherDerived>
- inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- check_template_parameters();
- const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
- if (needToTranspose)
- *this = other.derived();
- else
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- internal::call_assignment_no_alias(*this, other.derived());
- }
- }
-
- /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
- template<typename OtherDerived, unsigned int UpLo>
- inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
- : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- Base::operator=(other);
- }
-
- /** Copy constructor (it performs a deep copy) */
- inline SparseMatrix(const SparseMatrix& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- *this = other.derived();
- }
-
- /** \brief Copy constructor with in-place evaluation */
- template<typename OtherDerived>
- SparseMatrix(const ReturnByValue<OtherDerived>& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- initAssignment(other);
- other.evalTo(*this);
- }
-
- /** \brief Copy constructor with in-place evaluation */
- template<typename OtherDerived>
- explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
- : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
- {
- check_template_parameters();
- *this = other.derived();
- }
-
- /** Swaps the content of two sparse matrices of the same type.
- * This is a fast operation that simply swaps the underlying pointers and parameters. */
- inline void swap(SparseMatrix& other)
- {
- //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
- std::swap(m_outerIndex, other.m_outerIndex);
- std::swap(m_innerSize, other.m_innerSize);
- std::swap(m_outerSize, other.m_outerSize);
- std::swap(m_innerNonZeros, other.m_innerNonZeros);
- m_data.swap(other.m_data);
- }
-
- /** Sets *this to the identity matrix.
- * This function also turns the matrix into compressed mode, and drop any reserved memory. */
- inline void setIdentity()
- {
- eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
- this->m_data.resize(rows());
- Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
- Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
- Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- }
- inline SparseMatrix& operator=(const SparseMatrix& other)
- {
- if (other.isRValue())
- {
- swap(other.const_cast_derived());
- }
- else if(this!=&other)
- {
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
- initAssignment(other);
- if(other.isCompressed())
- {
- internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
- m_data = other.m_data;
- }
- else
- {
- Base::operator=(other);
- }
- }
- return *this;
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
- { return Base::operator=(other.derived()); }
-#endif // EIGEN_PARSED_BY_DOXYGEN
-
- template<typename OtherDerived>
- EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
-
- friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
- {
- EIGEN_DBG_SPARSE(
- s << "Nonzero entries:\n";
- if(m.isCompressed())
- {
- for (Index i=0; i<m.nonZeros(); ++i)
- s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
- }
- else
- {
- for (Index i=0; i<m.outerSize(); ++i)
- {
- Index p = m.m_outerIndex[i];
- Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
- Index k=p;
- for (; k<pe; ++k) {
- s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
- }
- for (; k<m.m_outerIndex[i+1]; ++k) {
- s << "(_,_) ";
- }
- }
- }
- s << std::endl;
- s << std::endl;
- s << "Outer pointers:\n";
- for (Index i=0; i<m.outerSize(); ++i) {
- s << m.m_outerIndex[i] << " ";
- }
- s << " $" << std::endl;
- if(!m.isCompressed())
- {
- s << "Inner non zeros:\n";
- for (Index i=0; i<m.outerSize(); ++i) {
- s << m.m_innerNonZeros[i] << " ";
- }
- s << " $" << std::endl;
- }
- s << std::endl;
- );
- s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
- return s;
- }
-
- /** Destructor */
- inline ~SparseMatrix()
- {
- std::free(m_outerIndex);
- std::free(m_innerNonZeros);
- }
-
- /** Overloaded for performance */
- Scalar sum() const;
-
-# ifdef EIGEN_SPARSEMATRIX_PLUGIN
-# include EIGEN_SPARSEMATRIX_PLUGIN
-# endif
-
-protected:
-
- template<typename Other>
- void initAssignment(const Other& other)
- {
- resize(other.rows(), other.cols());
- if(m_innerNonZeros)
- {
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- }
- }
-
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
-
- /** \internal
- * A vector object that is equal to 0 everywhere but v at the position i */
- class SingletonVector
- {
- StorageIndex m_index;
- StorageIndex m_value;
- public:
- typedef StorageIndex value_type;
- SingletonVector(Index i, Index v)
- : m_index(convert_index(i)), m_value(convert_index(v))
- {}
-
- StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
- };
-
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
-
-public:
- /** \internal
- * \sa insert(Index,Index) */
- EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
- {
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- eigen_assert(!isCompressed());
- eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
-
- Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
- m_data.index(p) = convert_index(inner);
- return (m_data.value(p) = 0);
- }
-
-private:
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
- EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
- }
-
- struct default_prunning_func {
- default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
- inline bool operator() (const Index&, const Index&, const Scalar& value) const
- {
- return !internal::isMuchSmallerThan(value, reference, epsilon);
- }
- Scalar reference;
- RealScalar epsilon;
- };
-};
-
-namespace internal {
-
-template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
-void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
-{
- enum { IsRowMajor = SparseMatrixType::IsRowMajor };
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::StorageIndex StorageIndex;
- SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
-
- if(begin!=end)
- {
- // pass 1: count the nnz per inner-vector
- typename SparseMatrixType::IndexVector wi(trMat.outerSize());
- wi.setZero();
- for(InputIterator it(begin); it!=end; ++it)
- {
- eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
- wi(IsRowMajor ? it->col() : it->row())++;
- }
-
- // pass 2: insert all the elements into trMat
- trMat.reserve(wi);
- for(InputIterator it(begin); it!=end; ++it)
- trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
-
- // pass 3:
- trMat.collapseDuplicates(dup_func);
- }
-
- // pass 4: transposed copy -> implicit sorting
- mat = trMat;
-}
-
-}
-
-
-/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
- *
- * A \em triplet is a tuple (i,j,value) defining a non-zero element.
- * The input list of triplets does not have to be sorted, and can contains duplicated elements.
- * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
- * This is a \em O(n) operation, with \em n the number of triplet elements.
- * The initial contents of \c *this is destroyed.
- * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
- * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
- *
- * The \a InputIterators value_type must provide the following interface:
- * \code
- * Scalar value() const; // the value
- * Scalar row() const; // the row index i
- * Scalar col() const; // the column index j
- * \endcode
- * See for instance the Eigen::Triplet template class.
- *
- * Here is a typical usage example:
- * \code
- typedef Triplet<double> T;
- std::vector<T> tripletList;
- triplets.reserve(estimation_of_entries);
- for(...)
- {
- // ...
- tripletList.push_back(T(i,j,v_ij));
- }
- SparseMatrixType m(rows,cols);
- m.setFromTriplets(tripletList.begin(), tripletList.end());
- // m is ready to go!
- * \endcode
- *
- * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
- * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
- * be explicitely stored into a std::vector for instance.
- */
-template<typename Scalar, int _Options, typename _StorageIndex>
-template<typename InputIterators>
-void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
-{
- internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
-}
-
-/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
- * \code
- * value = dup_func(OldValue, NewValue)
- * \endcode
- * Here is a C++11 example keeping the latest entry only:
- * \code
- * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
- * \endcode
- */
-template<typename Scalar, int _Options, typename _StorageIndex>
-template<typename InputIterators,typename DupFunctor>
-void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
-{
- internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
-}
-
-/** \internal */
-template<typename Scalar, int _Options, typename _StorageIndex>
-template<typename DupFunctor>
-void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
-{
- eigen_assert(!isCompressed());
- // TODO, in practice we should be able to use m_innerNonZeros for that task
- IndexVector wi(innerSize());
- wi.fill(-1);
- StorageIndex count = 0;
- // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
- for(Index j=0; j<outerSize(); ++j)
- {
- StorageIndex start = count;
- Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
- for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
- {
- Index i = m_data.index(k);
- if(wi(i)>=start)
- {
- // we already meet this entry => accumulate it
- m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
- }
- else
- {
- m_data.value(count) = m_data.value(k);
- m_data.index(count) = m_data.index(k);
- wi(i) = count;
- ++count;
- }
- }
- m_outerIndex[j] = start;
- }
- m_outerIndex[m_outerSize] = count;
-
- // turn the matrix into compressed form
- std::free(m_innerNonZeros);
- m_innerNonZeros = 0;
- m_data.resize(m_outerIndex[m_outerSize]);
-}
-
-template<typename Scalar, int _Options, typename _StorageIndex>
-template<typename OtherDerived>
-EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
-{
- EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
- #endif
-
- const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
- if (needToTranspose)
- {
- #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
- EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
- #endif
- // two passes algorithm:
- // 1 - compute the number of coeffs per dest inner vector
- // 2 - do the actual copy/eval
- // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
- typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
- typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
- typedef internal::evaluator<_OtherCopy> OtherCopyEval;
- OtherCopy otherCopy(other.derived());
- OtherCopyEval otherCopyEval(otherCopy);
-
- SparseMatrix dest(other.rows(),other.cols());
- Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
-
- // pass 1
- // FIXME the above copy could be merged with that pass
- for (Index j=0; j<otherCopy.outerSize(); ++j)
- for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
- ++dest.m_outerIndex[it.index()];
-
- // prefix sum
- StorageIndex count = 0;
- IndexVector positions(dest.outerSize());
- for (Index j=0; j<dest.outerSize(); ++j)
- {
- StorageIndex tmp = dest.m_outerIndex[j];
- dest.m_outerIndex[j] = count;
- positions[j] = count;
- count += tmp;
- }
- dest.m_outerIndex[dest.outerSize()] = count;
- // alloc
- dest.m_data.resize(count);
- // pass 2
- for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
- {
- for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
- {
- Index pos = positions[it.index()]++;
- dest.m_data.index(pos) = j;
- dest.m_data.value(pos) = it.value();
- }
- }
- this->swap(dest);
- return *this;
- }
- else
- {
- if(other.isRValue())
- {
- initAssignment(other.derived());
- }
- // there is no special optimization
- return Base::operator=(other.derived());
- }
-}
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
-{
- eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- if(isCompressed())
- {
- if(nonZeros()==0)
- {
- // reserve space if not already done
- if(m_data.allocatedSize()==0)
- m_data.reserve(2*m_innerSize);
-
- // turn the matrix into non-compressed mode
- m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
- if(!m_innerNonZeros) internal::throw_std_bad_alloc();
-
- memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
-
- // pack all inner-vectors to the end of the pre-allocated space
- // and allocate the entire free-space to the first inner-vector
- StorageIndex end = convert_index(m_data.allocatedSize());
- for(Index j=1; j<=m_outerSize; ++j)
- m_outerIndex[j] = end;
- }
- else
- {
- // turn the matrix into non-compressed mode
- m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
- if(!m_innerNonZeros) internal::throw_std_bad_alloc();
- for(Index j=0; j<m_outerSize; ++j)
- m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
- }
- }
-
- // check whether we can do a fast "push back" insertion
- Index data_end = m_data.allocatedSize();
-
- // First case: we are filling a new inner vector which is packed at the end.
- // We assume that all remaining inner-vectors are also empty and packed to the end.
- if(m_outerIndex[outer]==data_end)
- {
- eigen_internal_assert(m_innerNonZeros[outer]==0);
-
- // pack previous empty inner-vectors to end of the used-space
- // and allocate the entire free-space to the current inner-vector.
- StorageIndex p = convert_index(m_data.size());
- Index j = outer;
- while(j>=0 && m_innerNonZeros[j]==0)
- m_outerIndex[j--] = p;
-
- // push back the new element
- ++m_innerNonZeros[outer];
- m_data.append(Scalar(0), inner);
-
- // check for reallocation
- if(data_end != m_data.allocatedSize())
- {
- // m_data has been reallocated
- // -> move remaining inner-vectors back to the end of the free-space
- // so that the entire free-space is allocated to the current inner-vector.
- eigen_internal_assert(data_end < m_data.allocatedSize());
- StorageIndex new_end = convert_index(m_data.allocatedSize());
- for(Index k=outer+1; k<=m_outerSize; ++k)
- if(m_outerIndex[k]==data_end)
- m_outerIndex[k] = new_end;
- }
- return m_data.value(p);
- }
-
- // Second case: the next inner-vector is packed to the end
- // and the current inner-vector end match the used-space.
- if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
- {
- eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
-
- // add space for the new element
- ++m_innerNonZeros[outer];
- m_data.resize(m_data.size()+1);
-
- // check for reallocation
- if(data_end != m_data.allocatedSize())
- {
- // m_data has been reallocated
- // -> move remaining inner-vectors back to the end of the free-space
- // so that the entire free-space is allocated to the current inner-vector.
- eigen_internal_assert(data_end < m_data.allocatedSize());
- StorageIndex new_end = convert_index(m_data.allocatedSize());
- for(Index k=outer+1; k<=m_outerSize; ++k)
- if(m_outerIndex[k]==data_end)
- m_outerIndex[k] = new_end;
- }
-
- // and insert it at the right position (sorted insertion)
- Index startId = m_outerIndex[outer];
- Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
-
- m_data.index(p) = convert_index(inner);
- return (m_data.value(p) = 0);
- }
-
- if(m_data.size() != m_data.allocatedSize())
- {
- // make sure the matrix is compatible to random un-compressed insertion:
- m_data.resize(m_data.allocatedSize());
- this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
- }
-
- return insertUncompressed(row,col);
-}
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
-{
- eigen_assert(!isCompressed());
-
- const Index outer = IsRowMajor ? row : col;
- const StorageIndex inner = convert_index(IsRowMajor ? col : row);
-
- Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
- StorageIndex innerNNZ = m_innerNonZeros[outer];
- if(innerNNZ>=room)
- {
- // this inner vector is full, we need to reallocate the whole buffer :(
- reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
- }
-
- Index startId = m_outerIndex[outer];
- Index p = startId + m_innerNonZeros[outer];
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
- eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
-
- m_innerNonZeros[outer]++;
-
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
-}
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
-{
- eigen_assert(isCompressed());
-
- const Index outer = IsRowMajor ? row : col;
- const Index inner = IsRowMajor ? col : row;
-
- Index previousOuter = outer;
- if (m_outerIndex[outer+1]==0)
- {
- // we start a new inner vector
- while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
- {
- m_outerIndex[previousOuter] = convert_index(m_data.size());
- --previousOuter;
- }
- m_outerIndex[outer+1] = m_outerIndex[outer];
- }
-
- // here we have to handle the tricky case where the outerIndex array
- // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
- // the 2nd inner vector...
- bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
- && (std::size_t(m_outerIndex[outer+1]) == m_data.size());
-
- std::size_t startId = m_outerIndex[outer];
- // FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
- std::size_t p = m_outerIndex[outer+1];
- ++m_outerIndex[outer+1];
-
- double reallocRatio = 1;
- if (m_data.allocatedSize()<=m_data.size())
- {
- // if there is no preallocated memory, let's reserve a minimum of 32 elements
- if (m_data.size()==0)
- {
- m_data.reserve(32);
- }
- else
- {
- // we need to reallocate the data, to reduce multiple reallocations
- // we use a smart resize algorithm based on the current filling ratio
- // in addition, we use double to avoid integers overflows
- double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
- reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
- // furthermore we bound the realloc ratio to:
- // 1) reduce multiple minor realloc when the matrix is almost filled
- // 2) avoid to allocate too much memory when the matrix is almost empty
- reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
- }
- }
- m_data.resize(m_data.size()+1,reallocRatio);
-
- if (!isLastVec)
- {
- if (previousOuter==-1)
- {
- // oops wrong guess.
- // let's correct the outer offsets
- for (Index k=0; k<=(outer+1); ++k)
- m_outerIndex[k] = 0;
- Index k=outer+1;
- while(m_outerIndex[k]==0)
- m_outerIndex[k++] = 1;
- while (k<=m_outerSize && m_outerIndex[k]!=0)
- m_outerIndex[k++]++;
- p = 0;
- --k;
- k = m_outerIndex[k]-1;
- while (k>0)
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- else
- {
- // we are not inserting into the last inner vec
- // update outer indices:
- Index j = outer+2;
- while (j<=m_outerSize && m_outerIndex[j]!=0)
- m_outerIndex[j++]++;
- --j;
- // shift data of last vecs:
- Index k = m_outerIndex[j]-1;
- while (k>=Index(p))
- {
- m_data.index(k) = m_data.index(k-1);
- m_data.value(k) = m_data.value(k-1);
- k--;
- }
- }
- }
-
- while ( (p > startId) && (m_data.index(p-1) > inner) )
- {
- m_data.index(p) = m_data.index(p-1);
- m_data.value(p) = m_data.value(p-1);
- --p;
- }
-
- m_data.index(p) = inner;
- return (m_data.value(p) = 0);
-}
-
-namespace internal {
-
-template<typename _Scalar, int _Options, typename _StorageIndex>
-struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
- : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
-{
- typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
- typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
- evaluator() : Base() {}
- explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
-};
-
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSEMATRIX_H