summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h1231
1 files changed, 0 insertions, 1231 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h b/runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h
deleted file mode 100644
index d7a4271cb..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/SVD/BDCSVD.h
+++ /dev/null
@@ -1,1231 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
-// research report written by Ming Gu and Stanley C.Eisenstat
-// The code variable names correspond to the names they used in their
-// report
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-// Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BDCSVD_H
-#define EIGEN_BDCSVD_H
-// #define EIGEN_BDCSVD_DEBUG_VERBOSE
-// #define EIGEN_BDCSVD_SANITY_CHECKS
-
-namespace Eigen {
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
-IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
-#endif
-
-template<typename _MatrixType> class BDCSVD;
-
-namespace internal {
-
-template<typename _MatrixType>
-struct traits<BDCSVD<_MatrixType> >
-{
- typedef _MatrixType MatrixType;
-};
-
-} // end namespace internal
-
-
-/** \ingroup SVD_Module
- *
- *
- * \class BDCSVD
- *
- * \brief class Bidiagonal Divide and Conquer SVD
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
- *
- * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
- * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
- * You can control the switching size with the setSwitchSize() method, default is 16.
- * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
- * recommended and can several order of magnitude faster.
- *
- * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
- * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
- * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
- * significantly degrade the accuracy.
- *
- * \sa class JacobiSVD
- */
-template<typename _MatrixType>
-class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
-{
- typedef SVDBase<BDCSVD> Base;
-
-public:
- using Base::rows;
- using Base::cols;
- using Base::computeU;
- using Base::computeV;
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename NumTraits<RealScalar>::Literal Literal;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef typename Base::MatrixUType MatrixUType;
- typedef typename Base::MatrixVType MatrixVType;
- typedef typename Base::SingularValuesType SingularValuesType;
-
- typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
- typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
- typedef Matrix<RealScalar, Dynamic, 1> VectorType;
- typedef Array<RealScalar, Dynamic, 1> ArrayXr;
- typedef Array<Index,1,Dynamic> ArrayXi;
- typedef Ref<ArrayXr> ArrayRef;
- typedef Ref<ArrayXi> IndicesRef;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via BDCSVD::compute(const MatrixType&).
- */
- BDCSVD() : m_algoswap(16), m_numIters(0)
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa BDCSVD()
- */
- BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : m_algoswap(16), m_numIters(0)
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : m_algoswap(16), m_numIters(0)
- {
- compute(matrix, computationOptions);
- }
-
- ~BDCSVD()
- {
- }
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- BDCSVD& compute(const MatrixType& matrix)
- {
- return compute(matrix, this->m_computationOptions);
- }
-
- void setSwitchSize(int s)
- {
- eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
- m_algoswap = s;
- }
-
-private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
- void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
- void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
- void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
- void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
- void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
- void deflation43(Index firstCol, Index shift, Index i, Index size);
- void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
- void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
- template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
- void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
- void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
- static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
-
-protected:
- MatrixXr m_naiveU, m_naiveV;
- MatrixXr m_computed;
- Index m_nRec;
- ArrayXr m_workspace;
- ArrayXi m_workspaceI;
- int m_algoswap;
- bool m_isTranspose, m_compU, m_compV;
-
- using Base::m_singularValues;
- using Base::m_diagSize;
- using Base::m_computeFullU;
- using Base::m_computeFullV;
- using Base::m_computeThinU;
- using Base::m_computeThinV;
- using Base::m_matrixU;
- using Base::m_matrixV;
- using Base::m_isInitialized;
- using Base::m_nonzeroSingularValues;
-
-public:
- int m_numIters;
-}; //end class BDCSVD
-
-
-// Method to allocate and initialize matrix and attributes
-template<typename MatrixType>
-void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- m_isTranspose = (cols > rows);
-
- if (Base::allocate(rows, cols, computationOptions))
- return;
-
- m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
- m_compU = computeV();
- m_compV = computeU();
- if (m_isTranspose)
- std::swap(m_compU, m_compV);
-
- if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
- else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
-
- if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
-
- m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
- m_workspaceI.resize(3*m_diagSize);
-}// end allocate
-
-template<typename MatrixType>
-BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "\n\n\n======================================================================================================================\n\n\n";
-#endif
- allocate(matrix.rows(), matrix.cols(), computationOptions);
- using std::abs;
-
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
-
- //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
- if(matrix.cols() < m_algoswap)
- {
- // FIXME this line involves temporaries
- JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
- if(computeU()) m_matrixU = jsvd.matrixU();
- if(computeV()) m_matrixV = jsvd.matrixV();
- m_singularValues = jsvd.singularValues();
- m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
- m_isInitialized = true;
- return *this;
- }
-
- //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
- RealScalar scale = matrix.cwiseAbs().maxCoeff();
- if(scale==Literal(0)) scale = Literal(1);
- MatrixX copy;
- if (m_isTranspose) copy = matrix.adjoint()/scale;
- else copy = matrix/scale;
-
- //**** step 1 - Bidiagonalization
- // FIXME this line involves temporaries
- internal::UpperBidiagonalization<MatrixX> bid(copy);
-
- //**** step 2 - Divide & Conquer
- m_naiveU.setZero();
- m_naiveV.setZero();
- // FIXME this line involves a temporary matrix
- m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
- m_computed.template bottomRows<1>().setZero();
- divide(0, m_diagSize - 1, 0, 0, 0);
-
- //**** step 3 - Copy singular values and vectors
- for (int i=0; i<m_diagSize; i++)
- {
- RealScalar a = abs(m_computed.coeff(i, i));
- m_singularValues.coeffRef(i) = a * scale;
- if (a<considerZero)
- {
- m_nonzeroSingularValues = i;
- m_singularValues.tail(m_diagSize - i - 1).setZero();
- break;
- }
- else if (i == m_diagSize - 1)
- {
- m_nonzeroSingularValues = i + 1;
- break;
- }
- }
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
-// std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
-// std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
-#endif
- if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
- else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
-
- m_isInitialized = true;
- return *this;
-}// end compute
-
-
-template<typename MatrixType>
-template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
-void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
-{
- // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
- if (computeU())
- {
- Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
- m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
- m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
- householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
- }
- if (computeV())
- {
- Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
- m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
- m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
- householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
- }
-}
-
-/** \internal
- * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
- * A = [A1]
- * [A2]
- * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
- * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
- * enough.
- */
-template<typename MatrixType>
-void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
-{
- Index n = A.rows();
- if(n>100)
- {
- // If the matrices are large enough, let's exploit the sparse structure of A by
- // splitting it in half (wrt n1), and packing the non-zero columns.
- Index n2 = n - n1;
- Map<MatrixXr> A1(m_workspace.data() , n1, n);
- Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
- Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
- Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
- Index k1=0, k2=0;
- for(Index j=0; j<n; ++j)
- {
- if( (A.col(j).head(n1).array()!=Literal(0)).any() )
- {
- A1.col(k1) = A.col(j).head(n1);
- B1.row(k1) = B.row(j);
- ++k1;
- }
- if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
- {
- A2.col(k2) = A.col(j).tail(n2);
- B2.row(k2) = B.row(j);
- ++k2;
- }
- }
-
- A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
- A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
- }
- else
- {
- Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
- tmp.noalias() = A*B;
- A = tmp;
- }
-}
-
-// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
-// place of the submatrix we are currently working on.
-
-//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
-//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
-// lastCol + 1 - firstCol is the size of the submatrix.
-//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
-//@param firstRowW : Same as firstRowW with the column.
-//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
-// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
-template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
-{
- // requires rows = cols + 1;
- using std::pow;
- using std::sqrt;
- using std::abs;
- const Index n = lastCol - firstCol + 1;
- const Index k = n/2;
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
- RealScalar alphaK;
- RealScalar betaK;
- RealScalar r0;
- RealScalar lambda, phi, c0, s0;
- VectorType l, f;
- // We use the other algorithm which is more efficient for small
- // matrices.
- if (n < m_algoswap)
- {
- // FIXME this line involves temporaries
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
- if (m_compU)
- m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
- else
- {
- m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
- m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
- }
- if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
- m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
- m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
- return;
- }
- // We use the divide and conquer algorithm
- alphaK = m_computed(firstCol + k, firstCol + k);
- betaK = m_computed(firstCol + k + 1, firstCol + k);
- // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
- // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
- // right submatrix before the left one.
- divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
- divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
-
- if (m_compU)
- {
- lambda = m_naiveU(firstCol + k, firstCol + k);
- phi = m_naiveU(firstCol + k + 1, lastCol + 1);
- }
- else
- {
- lambda = m_naiveU(1, firstCol + k);
- phi = m_naiveU(0, lastCol + 1);
- }
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
- if (m_compU)
- {
- l = m_naiveU.row(firstCol + k).segment(firstCol, k);
- f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
- }
- else
- {
- l = m_naiveU.row(1).segment(firstCol, k);
- f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
- }
- if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
- if (r0<considerZero)
- {
- c0 = Literal(1);
- s0 = Literal(0);
- }
- else
- {
- c0 = alphaK * lambda / r0;
- s0 = betaK * phi / r0;
- }
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-
- if (m_compU)
- {
- MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
- // we shiftW Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
- // we shift q1 at the left with a factor c0
- m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
- // last column = q1 * - s0
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
- // q2 *= c0
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
- }
- else
- {
- RealScalar q1 = m_naiveU(0, firstCol + k);
- // we shift Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- m_naiveU(0, i + 1) = m_naiveU(0, i);
- // we shift q1 at the left with a factor c0
- m_naiveU(0, firstCol) = (q1 * c0);
- // last column = q1 * - s0
- m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
- // q2 *= c0
- m_naiveU(1, lastCol + 1) *= c0;
- m_naiveU.row(1).segment(firstCol + 1, k).setZero();
- m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
- }
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-
- m_computed(firstCol + shift, firstCol + shift) = r0;
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
-#endif
- // Second part: try to deflate singular values in combined matrix
- deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
- std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
- std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
- std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
- static int count = 0;
- std::cout << "# " << ++count << "\n\n";
- assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
-// assert(count<681);
-// assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
-#endif
-
- // Third part: compute SVD of combined matrix
- MatrixXr UofSVD, VofSVD;
- VectorType singVals;
- computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(UofSVD.allFinite());
- assert(VofSVD.allFinite());
-#endif
-
- if (m_compU)
- structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
- else
- {
- Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
- tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
- m_naiveU.middleCols(firstCol, n + 1) = tmp;
- }
-
- if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-
- m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
- m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
-}// end divide
-
-// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
-// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
-// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
-// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
-//
-// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
-// handling of round-off errors, be consistent in ordering
-// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
-{
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
- using std::abs;
- ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
- m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
- ArrayRef diag = m_workspace.head(n);
- diag(0) = Literal(0);
-
- // Allocate space for singular values and vectors
- singVals.resize(n);
- U.resize(n+1, n+1);
- if (m_compV) V.resize(n, n);
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- if (col0.hasNaN() || diag.hasNaN())
- std::cout << "\n\nHAS NAN\n\n";
-#endif
-
- // Many singular values might have been deflated, the zero ones have been moved to the end,
- // but others are interleaved and we must ignore them at this stage.
- // To this end, let's compute a permutation skipping them:
- Index actual_n = n;
- while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
- Index m = 0; // size of the deflated problem
- for(Index k=0;k<actual_n;++k)
- if(abs(col0(k))>considerZero)
- m_workspaceI(m++) = k;
- Map<ArrayXi> perm(m_workspaceI.data(),m);
-
- Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
- Map<ArrayXr> mus(m_workspace.data()+2*n, n);
- Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "computeSVDofM using:\n";
- std::cout << " z: " << col0.transpose() << "\n";
- std::cout << " d: " << diag.transpose() << "\n";
-#endif
-
- // Compute singVals, shifts, and mus
- computeSingVals(col0, diag, perm, singVals, shifts, mus);
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
- std::cout << " sing-val: " << singVals.transpose() << "\n";
- std::cout << " mu: " << mus.transpose() << "\n";
- std::cout << " shift: " << shifts.transpose() << "\n";
-
- {
- Index actual_n = n;
- while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
- std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
- std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
- std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
- std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
- std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
- }
-#endif
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(singVals.allFinite());
- assert(mus.allFinite());
- assert(shifts.allFinite());
-#endif
-
- // Compute zhat
- perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << " zhat: " << zhat.transpose() << "\n";
-#endif
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(zhat.allFinite());
-#endif
-
- computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
- std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
-#endif
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(U.allFinite());
- assert(V.allFinite());
- assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
- assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-
- // Because of deflation, the singular values might not be completely sorted.
- // Fortunately, reordering them is a O(n) problem
- for(Index i=0; i<actual_n-1; ++i)
- {
- if(singVals(i)>singVals(i+1))
- {
- using std::swap;
- swap(singVals(i),singVals(i+1));
- U.col(i).swap(U.col(i+1));
- if(m_compV) V.col(i).swap(V.col(i+1));
- }
- }
-
- // Reverse order so that singular values in increased order
- // Because of deflation, the zeros singular-values are already at the end
- singVals.head(actual_n).reverseInPlace();
- U.leftCols(actual_n).rowwise().reverseInPlace();
- if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
- std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
- std::cout << " * sing-val: " << singVals.transpose() << "\n";
-// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
-#endif
-}
-
-template <typename MatrixType>
-typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
-{
- Index m = perm.size();
- RealScalar res = Literal(1);
- for(Index i=0; i<m; ++i)
- {
- Index j = perm(i);
- res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
- }
- return res;
-
-}
-
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
- VectorType& singVals, ArrayRef shifts, ArrayRef mus)
-{
- using std::abs;
- using std::swap;
-
- Index n = col0.size();
- Index actual_n = n;
- while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
-
- for (Index k = 0; k < n; ++k)
- {
- if (col0(k) == Literal(0) || actual_n==1)
- {
- // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
- // if actual_n==1, then the deflated problem is already diagonalized
- singVals(k) = k==0 ? col0(0) : diag(k);
- mus(k) = Literal(0);
- shifts(k) = k==0 ? col0(0) : diag(k);
- continue;
- }
-
- // otherwise, use secular equation to find singular value
- RealScalar left = diag(k);
- RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
- if(k==actual_n-1)
- right = (diag(actual_n-1) + col0.matrix().norm());
- else
- {
- // Skip deflated singular values
- Index l = k+1;
- while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
- right = diag(l);
- }
-
- // first decide whether it's closer to the left end or the right end
- RealScalar mid = left + (right-left) / Literal(2);
- RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << right-left << "\n";
- std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n";
- std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
- << " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
-#endif
- RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
-
- // measure everything relative to shift
- Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
- diagShifted = diag - shift;
-
- // initial guess
- RealScalar muPrev, muCur;
- if (shift == left)
- {
- muPrev = (right - left) * RealScalar(0.1);
- if (k == actual_n-1) muCur = right - left;
- else muCur = (right - left) * RealScalar(0.5);
- }
- else
- {
- muPrev = -(right - left) * RealScalar(0.1);
- muCur = -(right - left) * RealScalar(0.5);
- }
-
- RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
- RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
- if (abs(fPrev) < abs(fCur))
- {
- swap(fPrev, fCur);
- swap(muPrev, muCur);
- }
-
- // rational interpolation: fit a function of the form a / mu + b through the two previous
- // iterates and use its zero to compute the next iterate
- bool useBisection = fPrev*fCur>Literal(0);
- while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
- {
- ++m_numIters;
-
- // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
- RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
- RealScalar b = fCur - a / muCur;
- // And find mu such that f(mu)==0:
- RealScalar muZero = -a/b;
- RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
-
- muPrev = muCur;
- fPrev = fCur;
- muCur = muZero;
- fCur = fZero;
-
-
- if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
- if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
- if (abs(fCur)>abs(fPrev)) useBisection = true;
- }
-
- // fall back on bisection method if rational interpolation did not work
- if (useBisection)
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
-#endif
- RealScalar leftShifted, rightShifted;
- if (shift == left)
- {
- leftShifted = (std::numeric_limits<RealScalar>::min)();
- // I don't understand why the case k==0 would be special there:
- // if (k == 0) rightShifted = right - left; else
- rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
- }
- else
- {
- leftShifted = -(right - left) * RealScalar(0.6);
- rightShifted = -(std::numeric_limits<RealScalar>::min)();
- }
-
- RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
-
-#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
- RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
-#endif
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- if(!(fLeft * fRight<0))
- {
- std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
- std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n";
- }
-#endif
- eigen_internal_assert(fLeft * fRight < Literal(0));
-
- while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
- {
- RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
- fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
- if (fLeft * fMid < Literal(0))
- {
- rightShifted = midShifted;
- }
- else
- {
- leftShifted = midShifted;
- fLeft = fMid;
- }
- }
-
- muCur = (leftShifted + rightShifted) / Literal(2);
- }
-
- singVals[k] = shift + muCur;
- shifts[k] = shift;
- mus[k] = muCur;
-
- // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
- // (deflation is supposed to avoid this from happening)
- // - this does no seem to be necessary anymore -
-// if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
-// if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
- }
-}
-
-
-// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
-template <typename MatrixType>
-void BDCSVD<MatrixType>::perturbCol0
- (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
- const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
-{
- using std::sqrt;
- Index n = col0.size();
- Index m = perm.size();
- if(m==0)
- {
- zhat.setZero();
- return;
- }
- Index last = perm(m-1);
- // The offset permits to skip deflated entries while computing zhat
- for (Index k = 0; k < n; ++k)
- {
- if (col0(k) == Literal(0)) // deflated
- zhat(k) = Literal(0);
- else
- {
- // see equation (3.6)
- RealScalar dk = diag(k);
- RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
-
- for(Index l = 0; l<m; ++l)
- {
- Index i = perm(l);
- if(i!=k)
- {
- Index j = i<k ? i : perm(l-1);
- prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
- std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
- << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
-#endif
- }
- }
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
-#endif
- RealScalar tmp = sqrt(prod);
- zhat(k) = col0(k) > Literal(0) ? tmp : -tmp;
- }
- }
-}
-
-// compute singular vectors
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSingVecs
- (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
- const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
-{
- Index n = zhat.size();
- Index m = perm.size();
-
- for (Index k = 0; k < n; ++k)
- {
- if (zhat(k) == Literal(0))
- {
- U.col(k) = VectorType::Unit(n+1, k);
- if (m_compV) V.col(k) = VectorType::Unit(n, k);
- }
- else
- {
- U.col(k).setZero();
- for(Index l=0;l<m;++l)
- {
- Index i = perm(l);
- U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
- }
- U(n,k) = Literal(0);
- U.col(k).normalize();
-
- if (m_compV)
- {
- V.col(k).setZero();
- for(Index l=1;l<m;++l)
- {
- Index i = perm(l);
- V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
- }
- V(0,k) = Literal(-1);
- V.col(k).normalize();
- }
- }
- }
- U.col(n) = VectorType::Unit(n+1, n);
-}
-
-
-// page 12_13
-// i >= 1, di almost null and zi non null.
-// We use a rotation to zero out zi applied to the left of M
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
-{
- using std::abs;
- using std::sqrt;
- using std::pow;
- Index start = firstCol + shift;
- RealScalar c = m_computed(start, start);
- RealScalar s = m_computed(start+i, start);
- RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
- if (r == Literal(0))
- {
- m_computed(start+i, start+i) = Literal(0);
- return;
- }
- m_computed(start,start) = r;
- m_computed(start+i, start) = Literal(0);
- m_computed(start+i, start+i) = Literal(0);
-
- JacobiRotation<RealScalar> J(c/r,-s/r);
- if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
- else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
-}// end deflation 43
-
-
-// page 13
-// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
-// We apply two rotations to have zj = 0;
-// TODO deflation44 is still broken and not properly tested
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
-{
- using std::abs;
- using std::sqrt;
- using std::conj;
- using std::pow;
- RealScalar c = m_computed(firstColm+i, firstColm);
- RealScalar s = m_computed(firstColm+j, firstColm);
- RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
- << m_computed(firstColm + i-1, firstColm) << " "
- << m_computed(firstColm + i, firstColm) << " "
- << m_computed(firstColm + i+1, firstColm) << " "
- << m_computed(firstColm + i+2, firstColm) << "\n";
- std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
- << m_computed(firstColm + i, firstColm+i) << " "
- << m_computed(firstColm + i+1, firstColm+i+1) << " "
- << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
-#endif
- if (r==Literal(0))
- {
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
- return;
- }
- c/=r;
- s/=r;
- m_computed(firstColm + i, firstColm) = r;
- m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
- m_computed(firstColm + j, firstColm) = Literal(0);
-
- JacobiRotation<RealScalar> J(c,-s);
- if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
- else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
- if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
-}// end deflation 44
-
-
-// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
-{
- using std::sqrt;
- using std::abs;
- const Index length = lastCol + 1 - firstCol;
-
- Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
- Diagonal<MatrixXr> fulldiag(m_computed);
- VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
-
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
- RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
- RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
- RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
-#endif
-
- //condition 4.1
- if (diag(0) < epsilon_coarse)
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
-#endif
- diag(0) = epsilon_coarse;
- }
-
- //condition 4.2
- for (Index i=1;i<length;++i)
- if (abs(col0(i)) < epsilon_strict)
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
-#endif
- col0(i) = Literal(0);
- }
-
- //condition 4.3
- for (Index i=1;i<length; i++)
- if (diag(i) < epsilon_coarse)
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
-#endif
- deflation43(firstCol, shift, i, length);
- }
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "to be sorted: " << diag.transpose() << "\n\n";
-#endif
- {
- // Check for total deflation
- // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
- bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
-
- // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
- // First, compute the respective permutation.
- Index *permutation = m_workspaceI.data();
- {
- permutation[0] = 0;
- Index p = 1;
-
- // Move deflated diagonal entries at the end.
- for(Index i=1; i<length; ++i)
- if(abs(diag(i))<considerZero)
- permutation[p++] = i;
-
- Index i=1, j=k+1;
- for( ; p < length; ++p)
- {
- if (i > k) permutation[p] = j++;
- else if (j >= length) permutation[p] = i++;
- else if (diag(i) < diag(j)) permutation[p] = j++;
- else permutation[p] = i++;
- }
- }
-
- // If we have a total deflation, then we have to insert diag(0) at the right place
- if(total_deflation)
- {
- for(Index i=1; i<length; ++i)
- {
- Index pi = permutation[i];
- if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
- permutation[i-1] = permutation[i];
- else
- {
- permutation[i-1] = 0;
- break;
- }
- }
- }
-
- // Current index of each col, and current column of each index
- Index *realInd = m_workspaceI.data()+length;
- Index *realCol = m_workspaceI.data()+2*length;
-
- for(int pos = 0; pos< length; pos++)
- {
- realCol[pos] = pos;
- realInd[pos] = pos;
- }
-
- for(Index i = total_deflation?0:1; i < length; i++)
- {
- const Index pi = permutation[length - (total_deflation ? i+1 : i)];
- const Index J = realCol[pi];
-
- using std::swap;
- // swap diagonal and first column entries:
- swap(diag(i), diag(J));
- if(i!=0 && J!=0) swap(col0(i), col0(J));
-
- // change columns
- if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
- else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
- if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
-
- //update real pos
- const Index realI = realInd[i];
- realCol[realI] = J;
- realCol[pi] = i;
- realInd[J] = realI;
- realInd[i] = pi;
- }
- }
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
- std::cout << " : " << col0.transpose() << "\n\n";
-#endif
-
- //condition 4.4
- {
- Index i = length-1;
- while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
- for(; i>1;--i)
- if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
- {
-#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
- std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
-#endif
- eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
- deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
- }
- }
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- for(Index j=2;j<length;++j)
- assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
-#endif
-
-#ifdef EIGEN_BDCSVD_SANITY_CHECKS
- assert(m_naiveU.allFinite());
- assert(m_naiveV.allFinite());
- assert(m_computed.allFinite());
-#endif
-}//end deflation
-
-#ifndef __CUDACC__
-/** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
- *
- * \sa class BDCSVD
- */
-template<typename Derived>
-BDCSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
-{
- return BDCSVD<PlainObject>(*this, computationOptions);
-}
-#endif
-
-} // end namespace Eigen
-
-#endif