summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h653
1 files changed, 0 insertions, 653 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h b/runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h
deleted file mode 100644
index a7b47d55d..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/QR/ColPivHouseholderQR.h
+++ /dev/null
@@ -1,653 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
- : traits<_MatrixType>
-{
- enum { Flags = 0 };
-};
-
-} // end namespace internal
-
-/** \ingroup QR_Module
- *
- * \class ColPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs column pivoting in order to be rank-revealing and improve
- * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::colPivHouseholderQr()
- */
-template<typename _MatrixType> class ColPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- // FIXME should be int
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- private:
-
- typedef typename PermutationType::StorageIndex PermIndexType;
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
- */
- ColPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_colsPermutation(),
- m_colsTranspositions(),
- m_temp(),
- m_colNormsUpdated(),
- m_colNormsDirect(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ColPivHouseholderQR()
- */
- ColPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_colsPermutation(PermIndexType(cols)),
- m_colsTranspositions(cols),
- m_temp(cols),
- m_colNormsUpdated(cols),
- m_colNormsDirect(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colNormsUpdated(matrix.cols()),
- m_colNormsDirect(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix.derived());
- }
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
- *
- * \sa ColPivHouseholderQR(const EigenBase&)
- */
- template<typename InputType>
- explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
- : m_qr(matrix.derived()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colNormsUpdated(matrix.cols()),
- m_colNormsDirect(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- computeInPlace();
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include ColPivHouseholderQR_solve.cpp
- * Output: \verbinclude ColPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const Solve<ColPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ() const;
- HouseholderSequenceType matrixQ() const
- {
- return householderQ();
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- /** \returns a reference to the matrix where the result Householder QR is stored
- * \warning The strict lower part of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixR().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- template<typename InputType>
- ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_colsPermutation;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const Inverse<ColPivHouseholderQR> inverse() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return Inverse<ColPivHouseholderQR>(*this);
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- ColPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \brief Reports whether the QR factorization was succesful.
- *
- * \note This function always returns \c Success. It is provided for compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
- #endif
-
- protected:
-
- friend class CompleteOrthogonalDecomposition<MatrixType>;
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- PermutationType m_colsPermutation;
- IntRowVectorType m_colsTranspositions;
- RowVectorType m_temp;
- RealRowVectorType m_colNormsUpdated;
- RealRowVectorType m_colNormsDirect;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-template<typename InputType>
-ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
-{
- m_qr = matrix.derived();
- computeInPlace();
- return *this;
-}
-
-template<typename MatrixType>
-void ColPivHouseholderQR<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
-
- using std::abs;
-
- Index rows = m_qr.rows();
- Index cols = m_qr.cols();
- Index size = m_qr.diagonalSize();
-
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_colsTranspositions.resize(m_qr.cols());
- Index number_of_transpositions = 0;
-
- m_colNormsUpdated.resize(cols);
- m_colNormsDirect.resize(cols);
- for (Index k = 0; k < cols; ++k) {
- // colNormsDirect(k) caches the most recent directly computed norm of
- // column k.
- m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
- m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
- }
-
- RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
- RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // first, we look up in our table m_colNormsUpdated which column has the biggest norm
- Index biggest_col_index;
- RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
- biggest_col_index += k;
-
- // Track the number of meaningful pivots but do not stop the decomposition to make
- // sure that the initial matrix is properly reproduced. See bug 941.
- if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
- m_nonzero_pivots = k;
-
- // apply the transposition to the columns
- m_colsTranspositions.coeffRef(k) = biggest_col_index;
- if(k != biggest_col_index) {
- m_qr.col(k).swap(m_qr.col(biggest_col_index));
- std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
- std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
- ++number_of_transpositions;
- }
-
- // generate the householder vector, store it below the diagonal
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
-
- // apply the householder transformation to the diagonal coefficient
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- // apply the householder transformation
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
-
- // update our table of norms of the columns
- for (Index j = k + 1; j < cols; ++j) {
- // The following implements the stable norm downgrade step discussed in
- // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
- // and used in LAPACK routines xGEQPF and xGEQP3.
- // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
- if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
- RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
- temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
- temp = temp < RealScalar(0) ? RealScalar(0) : temp;
- RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
- m_colNormsDirect.coeffRef(j));
- if (temp2 <= norm_downdate_threshold) {
- // The updated norm has become too inaccurate so re-compute the column
- // norm directly.
- m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
- m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
- } else {
- m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
- }
- }
- }
- }
-
- m_colsPermutation.setIdentity(PermIndexType(cols));
- for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
- m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-}
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename _MatrixType>
-template<typename RhsType, typename DstType>
-void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
-{
- eigen_assert(rhs.rows() == rows());
-
- const Index nonzero_pivots = nonzeroPivots();
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename RhsType::PlainObject c(rhs);
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs)
- .setLength(nonzero_pivots)
- .transpose()
- );
-
- m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
-}
-#endif
-
-namespace internal {
-
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef ColPivHouseholderQR<MatrixType> QrType;
- typedef Inverse<QrType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations.
- * You can extract the meaningful part only by using:
- * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
-template<typename MatrixType>
-typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
- ::householderQ() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
-}
-
-/** \return the column-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class ColPivHouseholderQR
- */
-template<typename Derived>
-const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::colPivHouseholderQr() const
-{
- return ColPivHouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H