summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h1542
1 files changed, 1542 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h b/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h
new file mode 100644
index 000000000..3f31ee45d
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Geometry/Transform.h
@@ -0,0 +1,1542 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRANSFORM_H
+#define EIGEN_TRANSFORM_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Transform>
+struct transform_traits
+{
+ enum
+ {
+ Dim = Transform::Dim,
+ HDim = Transform::HDim,
+ Mode = Transform::Mode,
+ IsProjective = (int(Mode)==int(Projective))
+ };
+};
+
+template< typename TransformType,
+ typename MatrixType,
+ int Case = transform_traits<TransformType>::IsProjective ? 0
+ : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
+ : 2,
+ int RhsCols = MatrixType::ColsAtCompileTime>
+struct transform_right_product_impl;
+
+template< typename Other,
+ int Mode,
+ int Options,
+ int Dim,
+ int HDim,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+struct transform_left_product_impl;
+
+template< typename Lhs,
+ typename Rhs,
+ bool AnyProjective =
+ transform_traits<Lhs>::IsProjective ||
+ transform_traits<Rhs>::IsProjective>
+struct transform_transform_product_impl;
+
+template< typename Other,
+ int Mode,
+ int Options,
+ int Dim,
+ int HDim,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+struct transform_construct_from_matrix;
+
+template<typename TransformType> struct transform_take_affine_part;
+
+template<typename _Scalar, int _Dim, int _Mode, int _Options>
+struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
+{
+ typedef _Scalar Scalar;
+ typedef Eigen::Index StorageIndex;
+ typedef Dense StorageKind;
+ enum {
+ Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
+ RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
+ ColsAtCompileTime = Dim1,
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+ Flags = 0
+ };
+};
+
+template<int Mode> struct transform_make_affine;
+
+} // end namespace internal
+
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \class Transform
+ *
+ * \brief Represents an homogeneous transformation in a N dimensional space
+ *
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _Dim the dimension of the space
+ * \tparam _Mode the type of the transformation. Can be:
+ * - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
+ * where the last row is assumed to be [0 ... 0 1].
+ * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
+ * - #Projective: the transformation is stored as a (Dim+1)^2 matrix
+ * without any assumption.
+ * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
+ * These Options are passed directly to the underlying matrix type.
+ *
+ * The homography is internally represented and stored by a matrix which
+ * is available through the matrix() method. To understand the behavior of
+ * this class you have to think a Transform object as its internal
+ * matrix representation. The chosen convention is right multiply:
+ *
+ * \code v' = T * v \endcode
+ *
+ * Therefore, an affine transformation matrix M is shaped like this:
+ *
+ * \f$ \left( \begin{array}{cc}
+ * linear & translation\\
+ * 0 ... 0 & 1
+ * \end{array} \right) \f$
+ *
+ * Note that for a projective transformation the last row can be anything,
+ * and then the interpretation of different parts might be sightly different.
+ *
+ * However, unlike a plain matrix, the Transform class provides many features
+ * simplifying both its assembly and usage. In particular, it can be composed
+ * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
+ * and can be directly used to transform implicit homogeneous vectors. All these
+ * operations are handled via the operator*. For the composition of transformations,
+ * its principle consists to first convert the right/left hand sides of the product
+ * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
+ * Of course, internally, operator* tries to perform the minimal number of operations
+ * according to the nature of each terms. Likewise, when applying the transform
+ * to points, the latters are automatically promoted to homogeneous vectors
+ * before doing the matrix product. The conventions to homogeneous representations
+ * are performed as follow:
+ *
+ * \b Translation t (Dim)x(1):
+ * \f$ \left( \begin{array}{cc}
+ * I & t \\
+ * 0\,...\,0 & 1
+ * \end{array} \right) \f$
+ *
+ * \b Rotation R (Dim)x(Dim):
+ * \f$ \left( \begin{array}{cc}
+ * R & 0\\
+ * 0\,...\,0 & 1
+ * \end{array} \right) \f$
+ *<!--
+ * \b Linear \b Matrix L (Dim)x(Dim):
+ * \f$ \left( \begin{array}{cc}
+ * L & 0\\
+ * 0\,...\,0 & 1
+ * \end{array} \right) \f$
+ *
+ * \b Affine \b Matrix A (Dim)x(Dim+1):
+ * \f$ \left( \begin{array}{c}
+ * A\\
+ * 0\,...\,0\,1
+ * \end{array} \right) \f$
+ *-->
+ * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
+ * \f$ \left( \begin{array}{cc}
+ * S & 0\\
+ * 0\,...\,0 & 1
+ * \end{array} \right) \f$
+ *
+ * \b Column \b point v (Dim)x(1):
+ * \f$ \left( \begin{array}{c}
+ * v\\
+ * 1
+ * \end{array} \right) \f$
+ *
+ * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
+ * \f$ \left( \begin{array}{ccc}
+ * v_1 & ... & v_n\\
+ * 1 & ... & 1
+ * \end{array} \right) \f$
+ *
+ * The concatenation of a Transform object with any kind of other transformation
+ * always returns a Transform object.
+ *
+ * A little exception to the "as pure matrix product" rule is the case of the
+ * transformation of non homogeneous vectors by an affine transformation. In
+ * that case the last matrix row can be ignored, and the product returns non
+ * homogeneous vectors.
+ *
+ * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
+ * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
+ * The solution is either to use a Dim x Dynamic matrix or explicitly request a
+ * vector transformation by making the vector homogeneous:
+ * \code
+ * m' = T * m.colwise().homogeneous();
+ * \endcode
+ * Note that there is zero overhead.
+ *
+ * Conversion methods from/to Qt's QMatrix and QTransform are available if the
+ * preprocessor token EIGEN_QT_SUPPORT is defined.
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
+ *
+ * \sa class Matrix, class Quaternion
+ */
+template<typename _Scalar, int _Dim, int _Mode, int _Options>
+class Transform
+{
+public:
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
+ enum {
+ Mode = _Mode,
+ Options = _Options,
+ Dim = _Dim, ///< space dimension in which the transformation holds
+ HDim = _Dim+1, ///< size of a respective homogeneous vector
+ Rows = int(Mode)==(AffineCompact) ? Dim : HDim
+ };
+ /** the scalar type of the coefficients */
+ typedef _Scalar Scalar;
+ typedef Eigen::Index StorageIndex;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+ /** type of the matrix used to represent the transformation */
+ typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
+ /** constified MatrixType */
+ typedef const MatrixType ConstMatrixType;
+ /** type of the matrix used to represent the linear part of the transformation */
+ typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
+ /** type of read/write reference to the linear part of the transformation */
+ typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
+ /** type of read reference to the linear part of the transformation */
+ typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
+ /** type of read/write reference to the affine part of the transformation */
+ typedef typename internal::conditional<int(Mode)==int(AffineCompact),
+ MatrixType&,
+ Block<MatrixType,Dim,HDim> >::type AffinePart;
+ /** type of read reference to the affine part of the transformation */
+ typedef typename internal::conditional<int(Mode)==int(AffineCompact),
+ const MatrixType&,
+ const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
+ /** type of a vector */
+ typedef Matrix<Scalar,Dim,1> VectorType;
+ /** type of a read/write reference to the translation part of the rotation */
+ typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
+ /** type of a read reference to the translation part of the rotation */
+ typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
+ /** corresponding translation type */
+ typedef Translation<Scalar,Dim> TranslationType;
+
+ // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
+ enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
+ /** The return type of the product between a diagonal matrix and a transform */
+ typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
+
+protected:
+
+ MatrixType m_matrix;
+
+public:
+
+ /** Default constructor without initialization of the meaningful coefficients.
+ * If Mode==Affine, then the last row is set to [0 ... 0 1] */
+ EIGEN_DEVICE_FUNC inline Transform()
+ {
+ check_template_params();
+ internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
+ }
+
+ EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
+ {
+ check_template_params();
+ m_matrix = other.m_matrix;
+ }
+
+ EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
+ {
+ check_template_params();
+ *this = t;
+ }
+ EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
+ {
+ check_template_params();
+ *this = s;
+ }
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
+ {
+ check_template_params();
+ *this = r;
+ }
+
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other)
+ { m_matrix = other.m_matrix; return *this; }
+
+ typedef internal::transform_take_affine_part<Transform> take_affine_part;
+
+ /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
+
+ check_template_params();
+ internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
+ }
+
+ /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
+
+ internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
+ return *this;
+ }
+
+ template<int OtherOptions>
+ EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
+ {
+ check_template_params();
+ // only the options change, we can directly copy the matrices
+ m_matrix = other.matrix();
+ }
+
+ template<int OtherMode,int OtherOptions>
+ EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
+ {
+ check_template_params();
+ // prevent conversions as:
+ // Affine | AffineCompact | Isometry = Projective
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
+ YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
+
+ // prevent conversions as:
+ // Isometry = Affine | AffineCompact
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
+ YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
+
+ enum { ModeIsAffineCompact = Mode == int(AffineCompact),
+ OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
+ };
+
+ if(ModeIsAffineCompact == OtherModeIsAffineCompact)
+ {
+ // We need the block expression because the code is compiled for all
+ // combinations of transformations and will trigger a compile time error
+ // if one tries to assign the matrices directly
+ m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
+ makeAffine();
+ }
+ else if(OtherModeIsAffineCompact)
+ {
+ typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
+ internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
+ }
+ else
+ {
+ // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
+ // if OtherMode were Projective, the static assert above would already have caught it.
+ // So the only possibility is that OtherMode == Affine
+ linear() = other.linear();
+ translation() = other.translation();
+ }
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
+ {
+ check_template_params();
+ other.evalTo(*this);
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
+ {
+ other.evalTo(*this);
+ return *this;
+ }
+
+ #ifdef EIGEN_QT_SUPPORT
+ inline Transform(const QMatrix& other);
+ inline Transform& operator=(const QMatrix& other);
+ inline QMatrix toQMatrix(void) const;
+ inline Transform(const QTransform& other);
+ inline Transform& operator=(const QTransform& other);
+ inline QTransform toQTransform(void) const;
+ #endif
+
+ EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); }
+
+ /** shortcut for m_matrix(row,col);
+ * \sa MatrixBase::operator(Index,Index) const */
+ EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
+ /** shortcut for m_matrix(row,col);
+ * \sa MatrixBase::operator(Index,Index) */
+ EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
+
+ /** \returns a read-only expression of the transformation matrix */
+ EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
+ /** \returns a writable expression of the transformation matrix */
+ EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
+
+ /** \returns a read-only expression of the linear part of the transformation */
+ EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
+ /** \returns a writable expression of the linear part of the transformation */
+ EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
+
+ /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
+ EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
+ /** \returns a writable expression of the Dim x HDim affine part of the transformation */
+ EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
+
+ /** \returns a read-only expression of the translation vector of the transformation */
+ EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
+ /** \returns a writable expression of the translation vector of the transformation */
+ EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
+
+ /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
+ *
+ * The right-hand-side \a other can be either:
+ * \li an homogeneous vector of size Dim+1,
+ * \li a set of homogeneous vectors of size Dim+1 x N,
+ * \li a transformation matrix of size Dim+1 x Dim+1.
+ *
+ * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
+ * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
+ * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
+ *
+ * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
+ *
+ * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
+ * or do your own cooking.
+ *
+ * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
+ * \code
+ * Affine3f A;
+ * Vector3f v1, v2;
+ * v2 = A.linear() * v1;
+ * \endcode
+ *
+ */
+ // note: this function is defined here because some compilers cannot find the respective declaration
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
+ operator * (const EigenBase<OtherDerived> &other) const
+ { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
+
+ /** \returns the product expression of a transformation matrix \a a times a transform \a b
+ *
+ * The left hand side \a other can be either:
+ * \li a linear transformation matrix of size Dim x Dim,
+ * \li an affine transformation matrix of size Dim x Dim+1,
+ * \li a general transformation matrix of size Dim+1 x Dim+1.
+ */
+ template<typename OtherDerived> friend
+ EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
+ operator * (const EigenBase<OtherDerived> &a, const Transform &b)
+ { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
+
+ /** \returns The product expression of a transform \a a times a diagonal matrix \a b
+ *
+ * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
+ * product results in a Transform of the same type (mode) as the lhs only if the lhs
+ * mode is no isometry. In that case, the returned transform is an affinity.
+ */
+ template<typename DiagonalDerived>
+ EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
+ operator * (const DiagonalBase<DiagonalDerived> &b) const
+ {
+ TransformTimeDiagonalReturnType res(*this);
+ res.linearExt() *= b;
+ return res;
+ }
+
+ /** \returns The product expression of a diagonal matrix \a a times a transform \a b
+ *
+ * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
+ * product results in a Transform of the same type (mode) as the lhs only if the lhs
+ * mode is no isometry. In that case, the returned transform is an affinity.
+ */
+ template<typename DiagonalDerived>
+ EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
+ operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
+ {
+ TransformTimeDiagonalReturnType res;
+ res.linear().noalias() = a*b.linear();
+ res.translation().noalias() = a*b.translation();
+ if (Mode!=int(AffineCompact))
+ res.matrix().row(Dim) = b.matrix().row(Dim);
+ return res;
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
+
+ /** Concatenates two transformations */
+ EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
+ {
+ return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
+ }
+
+ #if EIGEN_COMP_ICC
+private:
+ // this intermediate structure permits to workaround a bug in ICC 11:
+ // error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
+ // (const Eigen::Transform<double, 3, 2, 0> &) const"
+ // (the meaning of a name may have changed since the template declaration -- the type of the template is:
+ // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
+ // Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
+ //
+ template<int OtherMode,int OtherOptions> struct icc_11_workaround
+ {
+ typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
+ typedef typename ProductType::ResultType ResultType;
+ };
+
+public:
+ /** Concatenates two different transformations */
+ template<int OtherMode,int OtherOptions>
+ inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
+ operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
+ {
+ typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
+ return ProductType::run(*this,other);
+ }
+ #else
+ /** Concatenates two different transformations */
+ template<int OtherMode,int OtherOptions>
+ EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
+ operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
+ {
+ return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
+ }
+ #endif
+
+ /** \sa MatrixBase::setIdentity() */
+ EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
+
+ /**
+ * \brief Returns an identity transformation.
+ * \todo In the future this function should be returning a Transform expression.
+ */
+ EIGEN_DEVICE_FUNC static const Transform Identity()
+ {
+ return Transform(MatrixType::Identity());
+ }
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ inline Transform& scale(const MatrixBase<OtherDerived> &other);
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ inline Transform& prescale(const MatrixBase<OtherDerived> &other);
+
+ EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
+ EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ inline Transform& translate(const MatrixBase<OtherDerived> &other);
+
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
+
+ template<typename RotationType>
+ EIGEN_DEVICE_FUNC
+ inline Transform& rotate(const RotationType& rotation);
+
+ template<typename RotationType>
+ EIGEN_DEVICE_FUNC
+ inline Transform& prerotate(const RotationType& rotation);
+
+ EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
+ EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
+
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
+
+ EIGEN_DEVICE_FUNC
+ inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
+
+ EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
+
+ EIGEN_DEVICE_FUNC
+ inline Transform& operator=(const UniformScaling<Scalar>& t);
+
+ EIGEN_DEVICE_FUNC
+ inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
+
+ EIGEN_DEVICE_FUNC
+ inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
+ {
+ TransformTimeDiagonalReturnType res = *this;
+ res.scale(s.factor());
+ return res;
+ }
+
+ EIGEN_DEVICE_FUNC
+ inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
+
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
+
+ EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const;
+ template<typename RotationMatrixType, typename ScalingMatrixType>
+ EIGEN_DEVICE_FUNC
+ void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
+ template<typename ScalingMatrixType, typename RotationMatrixType>
+ EIGEN_DEVICE_FUNC
+ void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
+
+ template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
+ EIGEN_DEVICE_FUNC
+ Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+ const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
+
+ EIGEN_DEVICE_FUNC
+ inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
+
+ /** \returns a const pointer to the column major internal matrix */
+ EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
+ /** \returns a non-const pointer to the column major internal matrix */
+ EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
+ { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
+ {
+ check_template_params();
+ m_matrix = other.matrix().template cast<Scalar>();
+ }
+
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ { return m_matrix.isApprox(other.m_matrix, prec); }
+
+ /** Sets the last row to [0 ... 0 1]
+ */
+ EIGEN_DEVICE_FUNC void makeAffine()
+ {
+ internal::transform_make_affine<int(Mode)>::run(m_matrix);
+ }
+
+ /** \internal
+ * \returns the Dim x Dim linear part if the transformation is affine,
+ * and the HDim x Dim part for projective transformations.
+ */
+ EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
+ { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
+ /** \internal
+ * \returns the Dim x Dim linear part if the transformation is affine,
+ * and the HDim x Dim part for projective transformations.
+ */
+ EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
+ { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
+
+ /** \internal
+ * \returns the translation part if the transformation is affine,
+ * and the last column for projective transformations.
+ */
+ EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
+ { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
+ /** \internal
+ * \returns the translation part if the transformation is affine,
+ * and the last column for projective transformations.
+ */
+ EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
+ { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
+
+
+ #ifdef EIGEN_TRANSFORM_PLUGIN
+ #include EIGEN_TRANSFORM_PLUGIN
+ #endif
+
+protected:
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
+ {
+ EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
+ }
+ #endif
+
+};
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Isometry> Isometry2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Isometry> Isometry3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Isometry> Isometry2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Isometry> Isometry3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Affine> Affine2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Affine> Affine3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Affine> Affine2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Affine> Affine3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,AffineCompact> AffineCompact2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,AffineCompact> AffineCompact3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,AffineCompact> AffineCompact2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,AffineCompact> AffineCompact3d;
+
+/** \ingroup Geometry_Module */
+typedef Transform<float,2,Projective> Projective2f;
+/** \ingroup Geometry_Module */
+typedef Transform<float,3,Projective> Projective3f;
+/** \ingroup Geometry_Module */
+typedef Transform<double,2,Projective> Projective2d;
+/** \ingroup Geometry_Module */
+typedef Transform<double,3,Projective> Projective3d;
+
+/**************************
+*** Optional QT support ***
+**************************/
+
+#ifdef EIGEN_QT_SUPPORT
+/** Initializes \c *this from a QMatrix assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
+{
+ check_template_params();
+ *this = other;
+}
+
+/** Set \c *this from a QMatrix assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
+{
+ EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ if (Mode == int(AffineCompact))
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy();
+ else
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy(),
+ 0, 0, 1;
+ return *this;
+}
+
+/** \returns a QMatrix from \c *this assuming the dimension is 2.
+ *
+ * \warning this conversion might loss data if \c *this is not affine
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
+{
+ check_template_params();
+ EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
+ m_matrix.coeff(0,1), m_matrix.coeff(1,1),
+ m_matrix.coeff(0,2), m_matrix.coeff(1,2));
+}
+
+/** Initializes \c *this from a QTransform assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode,int Options>
+Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
+{
+ check_template_params();
+ *this = other;
+}
+
+/** Set \c *this from a QTransform assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
+{
+ check_template_params();
+ EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ if (Mode == int(AffineCompact))
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy();
+ else
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy(),
+ other.m13(), other.m23(), other.m33();
+ return *this;
+}
+
+/** \returns a QTransform from \c *this assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
+{
+ EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ if (Mode == int(AffineCompact))
+ return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
+ m_matrix.coeff(0,1), m_matrix.coeff(1,1),
+ m_matrix.coeff(0,2), m_matrix.coeff(1,2));
+ else
+ return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
+ m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
+ m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
+}
+#endif
+
+/*********************
+*** Procedural API ***
+*********************/
+
+/** Applies on the right the non uniform scale transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \sa prescale()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
+{
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ linearExt().noalias() = (linearExt() * other.asDiagonal());
+ return *this;
+}
+
+/** Applies on the right a uniform scale of a factor \a c to \c *this
+ * and returns a reference to \c *this.
+ * \sa prescale(Scalar)
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
+{
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ linearExt() *= s;
+ return *this;
+}
+
+/** Applies on the left the non uniform scale transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \sa scale()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
+{
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ affine().noalias() = (other.asDiagonal() * affine());
+ return *this;
+}
+
+/** Applies on the left a uniform scale of a factor \a c to \c *this
+ * and returns a reference to \c *this.
+ * \sa scale(Scalar)
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
+{
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ m_matrix.template topRows<Dim>() *= s;
+ return *this;
+}
+
+/** Applies on the right the translation matrix represented by the vector \a other
+ * to \c *this and returns a reference to \c *this.
+ * \sa pretranslate()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
+{
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+ translationExt() += linearExt() * other;
+ return *this;
+}
+
+/** Applies on the left the translation matrix represented by the vector \a other
+ * to \c *this and returns a reference to \c *this.
+ * \sa translate()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename OtherDerived>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
+{
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
+ if(int(Mode)==int(Projective))
+ affine() += other * m_matrix.row(Dim);
+ else
+ translation() += other;
+ return *this;
+}
+
+/** Applies on the right the rotation represented by the rotation \a rotation
+ * to \c *this and returns a reference to \c *this.
+ *
+ * The template parameter \a RotationType is the type of the rotation which
+ * must be known by internal::toRotationMatrix<>.
+ *
+ * Natively supported types includes:
+ * - any scalar (2D),
+ * - a Dim x Dim matrix expression,
+ * - a Quaternion (3D),
+ * - a AngleAxis (3D)
+ *
+ * This mechanism is easily extendable to support user types such as Euler angles,
+ * or a pair of Quaternion for 4D rotations.
+ *
+ * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationType>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
+{
+ linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
+ return *this;
+}
+
+/** Applies on the left the rotation represented by the rotation \a rotation
+ * to \c *this and returns a reference to \c *this.
+ *
+ * See rotate() for further details.
+ *
+ * \sa rotate()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationType>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
+{
+ m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
+ * m_matrix.template block<Dim,HDim>(0,0);
+ return *this;
+}
+
+/** Applies on the right the shear transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \warning 2D only.
+ * \sa preshear()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
+{
+ EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ VectorType tmp = linear().col(0)*sy + linear().col(1);
+ linear() << linear().col(0) + linear().col(1)*sx, tmp;
+ return *this;
+}
+
+/** Applies on the left the shear transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \warning 2D only.
+ * \sa shear()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
+{
+ EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
+ EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
+ m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
+ return *this;
+}
+
+/******************************************************
+*** Scaling, Translation and Rotation compatibility ***
+******************************************************/
+
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
+{
+ linear().setIdentity();
+ translation() = t.vector();
+ makeAffine();
+ return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
+{
+ Transform res = *this;
+ res.translate(t.vector());
+ return res;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
+{
+ m_matrix.setZero();
+ linear().diagonal().fill(s.factor());
+ makeAffine();
+ return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename Derived>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
+{
+ linear() = internal::toRotationMatrix<Scalar,Dim>(r);
+ translation().setZero();
+ makeAffine();
+ return *this;
+}
+
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename Derived>
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
+{
+ Transform res = *this;
+ res.rotate(r.derived());
+ return res;
+}
+
+/************************
+*** Special functions ***
+************************/
+
+/** \returns the rotation part of the transformation
+ *
+ *
+ * \svd_module
+ *
+ * \sa computeRotationScaling(), computeScalingRotation(), class SVD
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
+Transform<Scalar,Dim,Mode,Options>::rotation() const
+{
+ LinearMatrixType result;
+ computeRotationScaling(&result, (LinearMatrixType*)0);
+ return result;
+}
+
+
+/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
+ * not necessarily positive.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ *
+ *
+ * \svd_module
+ *
+ * \sa computeScalingRotation(), rotation(), class SVD
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename RotationMatrixType, typename ScalingMatrixType>
+EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
+{
+ JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
+
+ Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
+ VectorType sv(svd.singularValues());
+ sv.coeffRef(0) *= x;
+ if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint());
+ if(rotation)
+ {
+ LinearMatrixType m(svd.matrixU());
+ m.col(0) /= x;
+ rotation->lazyAssign(m * svd.matrixV().adjoint());
+ }
+}
+
+/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
+ * not necessarily positive.
+ *
+ * If either pointer is zero, the corresponding computation is skipped.
+ *
+ *
+ *
+ * \svd_module
+ *
+ * \sa computeRotationScaling(), rotation(), class SVD
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename ScalingMatrixType, typename RotationMatrixType>
+EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
+{
+ JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
+
+ Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
+ VectorType sv(svd.singularValues());
+ sv.coeffRef(0) *= x;
+ if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint());
+ if(rotation)
+ {
+ LinearMatrixType m(svd.matrixU());
+ m.col(0) /= x;
+ rotation->lazyAssign(m * svd.matrixV().adjoint());
+ }
+}
+
+/** Convenient method to set \c *this from a position, orientation and scale
+ * of a 3D object.
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
+Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+ const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
+{
+ linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
+ linear() *= scale.asDiagonal();
+ translation() = position;
+ makeAffine();
+ return *this;
+}
+
+namespace internal {
+
+template<int Mode>
+struct transform_make_affine
+{
+ template<typename MatrixType>
+ EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
+ {
+ static const int Dim = MatrixType::ColsAtCompileTime-1;
+ mat.template block<1,Dim>(Dim,0).setZero();
+ mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
+ }
+};
+
+template<>
+struct transform_make_affine<AffineCompact>
+{
+ template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
+};
+
+// selector needed to avoid taking the inverse of a 3x4 matrix
+template<typename TransformType, int Mode=TransformType::Mode>
+struct projective_transform_inverse
+{
+ EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
+ {}
+};
+
+template<typename TransformType>
+struct projective_transform_inverse<TransformType, Projective>
+{
+ EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
+ {
+ res.matrix() = m.matrix().inverse();
+ }
+};
+
+} // end namespace internal
+
+
+/**
+ *
+ * \returns the inverse transformation according to some given knowledge
+ * on \c *this.
+ *
+ * \param hint allows to optimize the inversion process when the transformation
+ * is known to be not a general transformation (optional). The possible values are:
+ * - #Projective if the transformation is not necessarily affine, i.e., if the
+ * last row is not guaranteed to be [0 ... 0 1]
+ * - #Affine if the last row can be assumed to be [0 ... 0 1]
+ * - #Isometry if the transformation is only a concatenations of translations
+ * and rotations.
+ * The default is the template class parameter \c Mode.
+ *
+ * \warning unless \a traits is always set to NoShear or NoScaling, this function
+ * requires the generic inverse method of MatrixBase defined in the LU module. If
+ * you forget to include this module, then you will get hard to debug linking errors.
+ *
+ * \sa MatrixBase::inverse()
+ */
+template<typename Scalar, int Dim, int Mode, int Options>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
+Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
+{
+ Transform res;
+ if (hint == Projective)
+ {
+ internal::projective_transform_inverse<Transform>::run(*this, res);
+ }
+ else
+ {
+ if (hint == Isometry)
+ {
+ res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
+ }
+ else if(hint&Affine)
+ {
+ res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
+ }
+ else
+ {
+ eigen_assert(false && "Invalid transform traits in Transform::Inverse");
+ }
+ // translation and remaining parts
+ res.matrix().template topRightCorner<Dim,1>()
+ = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
+ res.makeAffine(); // we do need this, because in the beginning res is uninitialized
+ }
+ return res;
+}
+
+namespace internal {
+
+/*****************************************************
+*** Specializations of take affine part ***
+*****************************************************/
+
+template<typename TransformType> struct transform_take_affine_part {
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef typename TransformType::AffinePart AffinePart;
+ typedef typename TransformType::ConstAffinePart ConstAffinePart;
+ static inline AffinePart run(MatrixType& m)
+ { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
+ static inline ConstAffinePart run(const MatrixType& m)
+ { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
+};
+
+template<typename Scalar, int Dim, int Options>
+struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
+ typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
+ static inline MatrixType& run(MatrixType& m) { return m; }
+ static inline const MatrixType& run(const MatrixType& m) { return m; }
+};
+
+/*****************************************************
+*** Specializations of construct from matrix ***
+*****************************************************/
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
+{
+ static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+ {
+ transform->linear() = other;
+ transform->translation().setZero();
+ transform->makeAffine();
+ }
+};
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
+{
+ static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+ {
+ transform->affine() = other;
+ transform->makeAffine();
+ }
+};
+
+template<typename Other, int Mode, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
+{
+ static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
+ { transform->matrix() = other; }
+};
+
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
+{
+ static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
+ { transform->matrix() = other.template block<Dim,HDim>(0,0); }
+};
+
+/**********************************************************
+*** Specializations of operator* with rhs EigenBase ***
+**********************************************************/
+
+template<int LhsMode,int RhsMode>
+struct transform_product_result
+{
+ enum
+ {
+ Mode =
+ (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective :
+ (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
+ (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
+ (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective
+ };
+};
+
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
+{
+ typedef typename MatrixType::PlainObject ResultType;
+
+ static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+ {
+ return T.matrix() * other;
+ }
+};
+
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
+{
+ enum {
+ Dim = TransformType::Dim,
+ HDim = TransformType::HDim,
+ OtherRows = MatrixType::RowsAtCompileTime,
+ OtherCols = MatrixType::ColsAtCompileTime
+ };
+
+ typedef typename MatrixType::PlainObject ResultType;
+
+ static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+ {
+ EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+ typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
+
+ ResultType res(other.rows(),other.cols());
+ TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
+ res.row(OtherRows-1) = other.row(OtherRows-1);
+
+ return res;
+ }
+};
+
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
+{
+ enum {
+ Dim = TransformType::Dim,
+ HDim = TransformType::HDim,
+ OtherRows = MatrixType::RowsAtCompileTime,
+ OtherCols = MatrixType::ColsAtCompileTime
+ };
+
+ typedef typename MatrixType::PlainObject ResultType;
+
+ static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+ {
+ EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+ typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
+ ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
+ TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
+
+ return res;
+ }
+};
+
+template< typename TransformType, typename MatrixType >
+struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
+{
+ typedef typename TransformType::MatrixType TransformMatrix;
+ enum {
+ Dim = TransformType::Dim,
+ HDim = TransformType::HDim,
+ OtherRows = MatrixType::RowsAtCompileTime,
+ WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
+ };
+
+ typedef typename MatrixType::PlainObject ResultType;
+
+ static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+ {
+ EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+ Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
+ rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
+ Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
+ return res.template head<Dim>();
+ }
+};
+
+/**********************************************************
+*** Specializations of operator* with lhs EigenBase ***
+**********************************************************/
+
+// generic HDim x HDim matrix * T => Projective
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
+{
+ typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
+ static ResultType run(const Other& other,const TransformType& tr)
+ { return ResultType(other * tr.matrix()); }
+};
+
+// generic HDim x HDim matrix * AffineCompact => Projective
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
+{
+ typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
+ static ResultType run(const Other& other,const TransformType& tr)
+ {
+ ResultType res;
+ res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
+ res.matrix().col(Dim) += other.col(Dim);
+ return res;
+ }
+};
+
+// affine matrix * T
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
+{
+ typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef TransformType ResultType;
+ static ResultType run(const Other& other,const TransformType& tr)
+ {
+ ResultType res;
+ res.affine().noalias() = other * tr.matrix();
+ res.matrix().row(Dim) = tr.matrix().row(Dim);
+ return res;
+ }
+};
+
+// affine matrix * AffineCompact
+template<typename Other, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
+{
+ typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef TransformType ResultType;
+ static ResultType run(const Other& other,const TransformType& tr)
+ {
+ ResultType res;
+ res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
+ res.translation() += other.col(Dim);
+ return res;
+ }
+};
+
+// linear matrix * T
+template<typename Other,int Mode, int Options, int Dim, int HDim>
+struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
+{
+ typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
+ typedef typename TransformType::MatrixType MatrixType;
+ typedef TransformType ResultType;
+ static ResultType run(const Other& other, const TransformType& tr)
+ {
+ TransformType res;
+ if(Mode!=int(AffineCompact))
+ res.matrix().row(Dim) = tr.matrix().row(Dim);
+ res.matrix().template topRows<Dim>().noalias()
+ = other * tr.matrix().template topRows<Dim>();
+ return res;
+ }
+};
+
+/**********************************************************
+*** Specializations of operator* with another Transform ***
+**********************************************************/
+
+template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
+{
+ enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
+ typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
+ typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
+ typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
+ static ResultType run(const Lhs& lhs, const Rhs& rhs)
+ {
+ ResultType res;
+ res.linear() = lhs.linear() * rhs.linear();
+ res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
+ res.makeAffine();
+ return res;
+ }
+};
+
+template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
+{
+ typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
+ typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
+ typedef Transform<Scalar,Dim,Projective> ResultType;
+ static ResultType run(const Lhs& lhs, const Rhs& rhs)
+ {
+ return ResultType( lhs.matrix() * rhs.matrix() );
+ }
+};
+
+template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
+{
+ typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
+ typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
+ typedef Transform<Scalar,Dim,Projective> ResultType;
+ static ResultType run(const Lhs& lhs, const Rhs& rhs)
+ {
+ ResultType res;
+ res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
+ res.matrix().row(Dim) = rhs.matrix().row(Dim);
+ return res;
+ }
+};
+
+template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
+struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
+{
+ typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
+ typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
+ typedef Transform<Scalar,Dim,Projective> ResultType;
+ static ResultType run(const Lhs& lhs, const Rhs& rhs)
+ {
+ ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
+ res.matrix().col(Dim) += lhs.matrix().col(Dim);
+ return res;
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRANSFORM_H