summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h546
1 files changed, 546 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h b/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h
new file mode 100644
index 000000000..f5c86041d
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/RealSchur.h
@@ -0,0 +1,546 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REAL_SCHUR_H
+#define EIGEN_REAL_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class RealSchur
+ *
+ * \brief Performs a real Schur decomposition of a square matrix
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * real Schur decomposition; this is expected to be an instantiation of the
+ * Matrix class template.
+ *
+ * Given a real square matrix A, this class computes the real Schur
+ * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
+ * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
+ * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
+ * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
+ * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
+ * blocks on the diagonal of T are the same as the eigenvalues of the matrix
+ * A, and thus the real Schur decomposition is used in EigenSolver to compute
+ * the eigendecomposition of a matrix.
+ *
+ * Call the function compute() to compute the real Schur decomposition of a
+ * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
+ * constructor which computes the real Schur decomposition at construction
+ * time. Once the decomposition is computed, you can use the matrixU() and
+ * matrixT() functions to retrieve the matrices U and T in the decomposition.
+ *
+ * The documentation of RealSchur(const MatrixType&, bool) contains an example
+ * of the typical use of this class.
+ *
+ * \note The implementation is adapted from
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+ * Their code is based on EISPACK.
+ *
+ * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
+ */
+template<typename _MatrixType> class RealSchur
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
+
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
+ */
+ explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
+ : m_matT(size, size),
+ m_matU(size, size),
+ m_workspaceVector(size),
+ m_hess(size),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ { }
+
+ /** \brief Constructor; computes real Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+ *
+ * This constructor calls compute() to compute the Schur decomposition.
+ *
+ * Example: \include RealSchur_RealSchur_MatrixType.cpp
+ * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
+ */
+ template<typename InputType>
+ explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
+ : m_matT(matrix.rows(),matrix.cols()),
+ m_matU(matrix.rows(),matrix.cols()),
+ m_workspaceVector(matrix.rows()),
+ m_hess(matrix.rows()),
+ m_isInitialized(false),
+ m_matUisUptodate(false),
+ m_maxIters(-1)
+ {
+ compute(matrix.derived(), computeU);
+ }
+
+ /** \brief Returns the orthogonal matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix U.
+ *
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+ * member function compute(const MatrixType&, bool) has been called before
+ * to compute the Schur decomposition of a matrix, and \p computeU was set
+ * to true (the default value).
+ *
+ * \sa RealSchur(const MatrixType&, bool) for an example
+ */
+ const MatrixType& matrixU() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
+ return m_matU;
+ }
+
+ /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
+ *
+ * \returns A const reference to the matrix T.
+ *
+ * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
+ * member function compute(const MatrixType&, bool) has been called before
+ * to compute the Schur decomposition of a matrix.
+ *
+ * \sa RealSchur(const MatrixType&, bool) for an example
+ */
+ const MatrixType& matrixT() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_matT;
+ }
+
+ /** \brief Computes Schur decomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
+ * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
+ * \returns Reference to \c *this
+ *
+ * The Schur decomposition is computed by first reducing the matrix to
+ * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
+ * matrix is then reduced to triangular form by performing Francis QR
+ * iterations with implicit double shift. The cost of computing the Schur
+ * decomposition depends on the number of iterations; as a rough guide, it
+ * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
+ * \f$10n^3\f$ flops if \a computeU is false.
+ *
+ * Example: \include RealSchur_compute.cpp
+ * Output: \verbinclude RealSchur_compute.out
+ *
+ * \sa compute(const MatrixType&, bool, Index)
+ */
+ template<typename InputType>
+ RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
+
+ /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
+ * \param[in] matrixH Matrix in Hessenberg form H
+ * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
+ * \param computeU Computes the matriX U of the Schur vectors
+ * \return Reference to \c *this
+ *
+ * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
+ * using either the class HessenbergDecomposition or another mean.
+ * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
+ * When computeU is true, this routine computes the matrix U such that
+ * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
+ *
+ * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
+ * is not available, the user should give an identity matrix (Q.setIdentity())
+ *
+ * \sa compute(const MatrixType&, bool)
+ */
+ template<typename HessMatrixType, typename OrthMatrixType>
+ RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Sets the maximum number of iterations allowed.
+ *
+ * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
+ * of the matrix.
+ */
+ RealSchur& setMaxIterations(Index maxIters)
+ {
+ m_maxIters = maxIters;
+ return *this;
+ }
+
+ /** \brief Returns the maximum number of iterations. */
+ Index getMaxIterations()
+ {
+ return m_maxIters;
+ }
+
+ /** \brief Maximum number of iterations per row.
+ *
+ * If not otherwise specified, the maximum number of iterations is this number times the size of the
+ * matrix. It is currently set to 40.
+ */
+ static const int m_maxIterationsPerRow = 40;
+
+ private:
+
+ MatrixType m_matT;
+ MatrixType m_matU;
+ ColumnVectorType m_workspaceVector;
+ HessenbergDecomposition<MatrixType> m_hess;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_matUisUptodate;
+ Index m_maxIters;
+
+ typedef Matrix<Scalar,3,1> Vector3s;
+
+ Scalar computeNormOfT();
+ Index findSmallSubdiagEntry(Index iu);
+ void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
+ void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
+ void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
+ void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
+};
+
+
+template<typename MatrixType>
+template<typename InputType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
+{
+ const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
+
+ eigen_assert(matrix.cols() == matrix.rows());
+ Index maxIters = m_maxIters;
+ if (maxIters == -1)
+ maxIters = m_maxIterationsPerRow * matrix.rows();
+
+ Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
+ if(scale<considerAsZero)
+ {
+ m_matT.setZero(matrix.rows(),matrix.cols());
+ if(computeU)
+ m_matU.setIdentity(matrix.rows(),matrix.cols());
+ m_info = Success;
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+ return *this;
+ }
+
+ // Step 1. Reduce to Hessenberg form
+ m_hess.compute(matrix.derived()/scale);
+
+ // Step 2. Reduce to real Schur form
+ computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
+
+ m_matT *= scale;
+
+ return *this;
+}
+template<typename MatrixType>
+template<typename HessMatrixType, typename OrthMatrixType>
+RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
+{
+ using std::abs;
+
+ m_matT = matrixH;
+ if(computeU)
+ m_matU = matrixQ;
+
+ Index maxIters = m_maxIters;
+ if (maxIters == -1)
+ maxIters = m_maxIterationsPerRow * matrixH.rows();
+ m_workspaceVector.resize(m_matT.cols());
+ Scalar* workspace = &m_workspaceVector.coeffRef(0);
+
+ // The matrix m_matT is divided in three parts.
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
+ // Rows il,...,iu is the part we are working on (the active window).
+ // Rows iu+1,...,end are already brought in triangular form.
+ Index iu = m_matT.cols() - 1;
+ Index iter = 0; // iteration count for current eigenvalue
+ Index totalIter = 0; // iteration count for whole matrix
+ Scalar exshift(0); // sum of exceptional shifts
+ Scalar norm = computeNormOfT();
+
+ if(norm!=0)
+ {
+ while (iu >= 0)
+ {
+ Index il = findSmallSubdiagEntry(iu);
+
+ // Check for convergence
+ if (il == iu) // One root found
+ {
+ m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
+ if (iu > 0)
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
+ iu--;
+ iter = 0;
+ }
+ else if (il == iu-1) // Two roots found
+ {
+ splitOffTwoRows(iu, computeU, exshift);
+ iu -= 2;
+ iter = 0;
+ }
+ else // No convergence yet
+ {
+ // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
+ Vector3s firstHouseholderVector(0,0,0), shiftInfo;
+ computeShift(iu, iter, exshift, shiftInfo);
+ iter = iter + 1;
+ totalIter = totalIter + 1;
+ if (totalIter > maxIters) break;
+ Index im;
+ initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
+ performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
+ }
+ }
+ }
+ if(totalIter <= maxIters)
+ m_info = Success;
+ else
+ m_info = NoConvergence;
+
+ m_isInitialized = true;
+ m_matUisUptodate = computeU;
+ return *this;
+}
+
+/** \internal Computes and returns vector L1 norm of T */
+template<typename MatrixType>
+inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
+{
+ const Index size = m_matT.cols();
+ // FIXME to be efficient the following would requires a triangular reduxion code
+ // Scalar norm = m_matT.upper().cwiseAbs().sum()
+ // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
+ Scalar norm(0);
+ for (Index j = 0; j < size; ++j)
+ norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
+ return norm;
+}
+
+/** \internal Look for single small sub-diagonal element and returns its index */
+template<typename MatrixType>
+inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
+{
+ using std::abs;
+ Index res = iu;
+ while (res > 0)
+ {
+ Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
+ if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
+ break;
+ res--;
+ }
+ return res;
+}
+
+/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
+{
+ using std::sqrt;
+ using std::abs;
+ const Index size = m_matT.cols();
+
+ // The eigenvalues of the 2x2 matrix [a b; c d] are
+ // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
+ Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
+ Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
+ m_matT.coeffRef(iu,iu) += exshift;
+ m_matT.coeffRef(iu-1,iu-1) += exshift;
+
+ if (q >= Scalar(0)) // Two real eigenvalues
+ {
+ Scalar z = sqrt(abs(q));
+ JacobiRotation<Scalar> rot;
+ if (p >= Scalar(0))
+ rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
+ else
+ rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
+
+ m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
+ m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
+ m_matT.coeffRef(iu, iu-1) = Scalar(0);
+ if (computeU)
+ m_matU.applyOnTheRight(iu-1, iu, rot);
+ }
+
+ if (iu > 1)
+ m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
+}
+
+/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
+{
+ using std::sqrt;
+ using std::abs;
+ shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
+ shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
+ shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
+
+ // Wilkinson's original ad hoc shift
+ if (iter == 10)
+ {
+ exshift += shiftInfo.coeff(0);
+ for (Index i = 0; i <= iu; ++i)
+ m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
+ Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
+ shiftInfo.coeffRef(0) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(1) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+ if (iter == 30)
+ {
+ Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = s * s + shiftInfo.coeff(2);
+ if (s > Scalar(0))
+ {
+ s = sqrt(s);
+ if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
+ s = -s;
+ s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
+ exshift += s;
+ for (Index i = 0; i <= iu; ++i)
+ m_matT.coeffRef(i,i) -= s;
+ shiftInfo.setConstant(Scalar(0.964));
+ }
+ }
+}
+
+/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
+{
+ using std::abs;
+ Vector3s& v = firstHouseholderVector; // alias to save typing
+
+ for (im = iu-2; im >= il; --im)
+ {
+ const Scalar Tmm = m_matT.coeff(im,im);
+ const Scalar r = shiftInfo.coeff(0) - Tmm;
+ const Scalar s = shiftInfo.coeff(1) - Tmm;
+ v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
+ v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
+ v.coeffRef(2) = m_matT.coeff(im+2,im+1);
+ if (im == il) {
+ break;
+ }
+ const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
+ const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
+ if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
+ break;
+ }
+}
+
+/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
+template<typename MatrixType>
+inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
+{
+ eigen_assert(im >= il);
+ eigen_assert(im <= iu-2);
+
+ const Index size = m_matT.cols();
+
+ for (Index k = im; k <= iu-2; ++k)
+ {
+ bool firstIteration = (k == im);
+
+ Vector3s v;
+ if (firstIteration)
+ v = firstHouseholderVector;
+ else
+ v = m_matT.template block<3,1>(k,k-1);
+
+ Scalar tau, beta;
+ Matrix<Scalar, 2, 1> ess;
+ v.makeHouseholder(ess, tau, beta);
+
+ if (beta != Scalar(0)) // if v is not zero
+ {
+ if (firstIteration && k > il)
+ m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
+ else if (!firstIteration)
+ m_matT.coeffRef(k,k-1) = beta;
+
+ // These Householder transformations form the O(n^3) part of the algorithm
+ m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
+ m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+ if (computeU)
+ m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
+ }
+ }
+
+ Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
+ Scalar tau, beta;
+ Matrix<Scalar, 1, 1> ess;
+ v.makeHouseholder(ess, tau, beta);
+
+ if (beta != Scalar(0)) // if v is not zero
+ {
+ m_matT.coeffRef(iu-1, iu-2) = beta;
+ m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
+ m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+ if (computeU)
+ m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
+ }
+
+ // clean up pollution due to round-off errors
+ for (Index i = im+2; i <= iu; ++i)
+ {
+ m_matT.coeffRef(i,i-2) = Scalar(0);
+ if (i > im+2)
+ m_matT.coeffRef(i,i-3) = Scalar(0);
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_REAL_SCHUR_H