summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h622
1 files changed, 0 insertions, 622 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h b/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h
deleted file mode 100644
index f205b185d..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/Eigenvalues/EigenSolver.h
+++ /dev/null
@@ -1,622 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_EIGENSOLVER_H
-#define EIGEN_EIGENSOLVER_H
-
-#include "./RealSchur.h"
-
-namespace Eigen {
-
-/** \eigenvalues_module \ingroup Eigenvalues_Module
- *
- *
- * \class EigenSolver
- *
- * \brief Computes eigenvalues and eigenvectors of general matrices
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the
- * eigendecomposition; this is expected to be an instantiation of the Matrix
- * class template. Currently, only real matrices are supported.
- *
- * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
- * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
- * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
- * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
- * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
- * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
- *
- * The eigenvalues and eigenvectors of a matrix may be complex, even when the
- * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
- * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
- * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
- * have blocks of the form
- * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
- * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
- * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
- * this variant of the eigendecomposition the pseudo-eigendecomposition.
- *
- * Call the function compute() to compute the eigenvalues and eigenvectors of
- * a given matrix. Alternatively, you can use the
- * EigenSolver(const MatrixType&, bool) constructor which computes the
- * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
- * eigenvectors are computed, they can be retrieved with the eigenvalues() and
- * eigenvectors() functions. The pseudoEigenvalueMatrix() and
- * pseudoEigenvectors() methods allow the construction of the
- * pseudo-eigendecomposition.
- *
- * The documentation for EigenSolver(const MatrixType&, bool) contains an
- * example of the typical use of this class.
- *
- * \note The implementation is adapted from
- * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
- * Their code is based on EISPACK.
- *
- * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
- */
-template<typename _MatrixType> class EigenSolver
-{
- public:
-
- /** \brief Synonym for the template parameter \p _MatrixType. */
- typedef _MatrixType MatrixType;
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- Options = MatrixType::Options,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- /** \brief Scalar type for matrices of type #MatrixType. */
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
-
- /** \brief Complex scalar type for #MatrixType.
- *
- * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
- * \c float or \c double) and just \c Scalar if #Scalar is
- * complex.
- */
- typedef std::complex<RealScalar> ComplexScalar;
-
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
- *
- * This is a column vector with entries of type #ComplexScalar.
- * The length of the vector is the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
-
- /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
- *
- * This is a square matrix with entries of type #ComplexScalar.
- * The size is the same as the size of #MatrixType.
- */
- typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
-
- /** \brief Default constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
- *
- * \sa compute() for an example.
- */
- EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
-
- /** \brief Default constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa EigenSolver()
- */
- explicit EigenSolver(Index size)
- : m_eivec(size, size),
- m_eivalues(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realSchur(size),
- m_matT(size, size),
- m_tmp(size)
- {}
-
- /** \brief Constructor; computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- *
- * This constructor calls compute() to compute the eigenvalues
- * and eigenvectors.
- *
- * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
- * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
- : m_eivec(matrix.rows(), matrix.cols()),
- m_eivalues(matrix.cols()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
- m_realSchur(matrix.cols()),
- m_matT(matrix.rows(), matrix.cols()),
- m_tmp(matrix.cols())
- {
- compute(matrix.derived(), computeEigenvectors);
- }
-
- /** \brief Returns the eigenvectors of given matrix.
- *
- * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. The
- * matrix returned by this function is the matrix \f$ V \f$ in the
- * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
- *
- * Example: \include EigenSolver_eigenvectors.cpp
- * Output: \verbinclude EigenSolver_eigenvectors.out
- *
- * \sa eigenvalues(), pseudoEigenvectors()
- */
- EigenvectorsType eigenvectors() const;
-
- /** \brief Returns the pseudo-eigenvectors of given matrix.
- *
- * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before, and
- * \p computeEigenvectors was set to true (the default).
- *
- * The real matrix \f$ V \f$ returned by this function and the
- * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
- * satisfy \f$ AV = VD \f$.
- *
- * Example: \include EigenSolver_pseudoEigenvectors.cpp
- * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
- *
- * \sa pseudoEigenvalueMatrix(), eigenvectors()
- */
- const MatrixType& pseudoEigenvectors() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- return m_eivec;
- }
-
- /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
- *
- * \returns A block-diagonal matrix.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before.
- *
- * The matrix \f$ D \f$ returned by this function is real and
- * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
- * blocks of the form
- * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
- * These blocks are not sorted in any particular order.
- * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
- * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
- *
- * \sa pseudoEigenvectors() for an example, eigenvalues()
- */
- MatrixType pseudoEigenvalueMatrix() const;
-
- /** \brief Returns the eigenvalues of given matrix.
- *
- * \returns A const reference to the column vector containing the eigenvalues.
- *
- * \pre Either the constructor
- * EigenSolver(const MatrixType&,bool) or the member function
- * compute(const MatrixType&, bool) has been called before.
- *
- * The eigenvalues are repeated according to their algebraic multiplicity,
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
- * are not sorted in any particular order.
- *
- * Example: \include EigenSolver_eigenvalues.cpp
- * Output: \verbinclude EigenSolver_eigenvalues.out
- *
- * \sa eigenvectors(), pseudoEigenvalueMatrix(),
- * MatrixBase::eigenvalues()
- */
- const EigenvalueType& eigenvalues() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_eivalues;
- }
-
- /** \brief Computes eigendecomposition of given matrix.
- *
- * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
- * \param[in] computeEigenvectors If true, both the eigenvectors and the
- * eigenvalues are computed; if false, only the eigenvalues are
- * computed.
- * \returns Reference to \c *this
- *
- * This function computes the eigenvalues of the real matrix \p matrix.
- * The eigenvalues() function can be used to retrieve them. If
- * \p computeEigenvectors is true, then the eigenvectors are also computed
- * and can be retrieved by calling eigenvectors().
- *
- * The matrix is first reduced to real Schur form using the RealSchur
- * class. The Schur decomposition is then used to compute the eigenvalues
- * and eigenvectors.
- *
- * The cost of the computation is dominated by the cost of the
- * Schur decomposition, which is very approximately \f$ 25n^3 \f$
- * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
- * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
- *
- * This method reuses of the allocated data in the EigenSolver object.
- *
- * Example: \include EigenSolver_compute.cpp
- * Output: \verbinclude EigenSolver_compute.out
- */
- template<typename InputType>
- EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
-
- /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- return m_info;
- }
-
- /** \brief Sets the maximum number of iterations allowed. */
- EigenSolver& setMaxIterations(Index maxIters)
- {
- m_realSchur.setMaxIterations(maxIters);
- return *this;
- }
-
- /** \brief Returns the maximum number of iterations. */
- Index getMaxIterations()
- {
- return m_realSchur.getMaxIterations();
- }
-
- private:
- void doComputeEigenvectors();
-
- protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
- }
-
- MatrixType m_eivec;
- EigenvalueType m_eivalues;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
- ComputationInfo m_info;
- RealSchur<MatrixType> m_realSchur;
- MatrixType m_matT;
-
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
- ColumnVectorType m_tmp;
-};
-
-template<typename MatrixType>
-MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
-{
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
- Index n = m_eivalues.rows();
- MatrixType matD = MatrixType::Zero(n,n);
- for (Index i=0; i<n; ++i)
- {
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
- matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
- else
- {
- matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
- -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
- ++i;
- }
- }
- return matD;
-}
-
-template<typename MatrixType>
-typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
-{
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
- const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
- Index n = m_eivec.cols();
- EigenvectorsType matV(n,n);
- for (Index j=0; j<n; ++j)
- {
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
- {
- // we have a real eigen value
- matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
- matV.col(j).normalize();
- }
- else
- {
- // we have a pair of complex eigen values
- for (Index i=0; i<n; ++i)
- {
- matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
- matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
- }
- matV.col(j).normalize();
- matV.col(j+1).normalize();
- ++j;
- }
- }
- return matV;
-}
-
-template<typename MatrixType>
-template<typename InputType>
-EigenSolver<MatrixType>&
-EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
-{
- check_template_parameters();
-
- using std::sqrt;
- using std::abs;
- using numext::isfinite;
- eigen_assert(matrix.cols() == matrix.rows());
-
- // Reduce to real Schur form.
- m_realSchur.compute(matrix.derived(), computeEigenvectors);
-
- m_info = m_realSchur.info();
-
- if (m_info == Success)
- {
- m_matT = m_realSchur.matrixT();
- if (computeEigenvectors)
- m_eivec = m_realSchur.matrixU();
-
- // Compute eigenvalues from matT
- m_eivalues.resize(matrix.cols());
- Index i = 0;
- while (i < matrix.cols())
- {
- if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
- {
- m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
- if(!(isfinite)(m_eivalues.coeffRef(i)))
- {
- m_isInitialized = true;
- m_eigenvectorsOk = false;
- m_info = NumericalIssue;
- return *this;
- }
- ++i;
- }
- else
- {
- Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
- Scalar z;
- // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
- // without overflow
- {
- Scalar t0 = m_matT.coeff(i+1, i);
- Scalar t1 = m_matT.coeff(i, i+1);
- Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1)));
- t0 /= maxval;
- t1 /= maxval;
- Scalar p0 = p/maxval;
- z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
- }
-
- m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
- m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
- if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1))))
- {
- m_isInitialized = true;
- m_eigenvectorsOk = false;
- m_info = NumericalIssue;
- return *this;
- }
- i += 2;
- }
- }
-
- // Compute eigenvectors.
- if (computeEigenvectors)
- doComputeEigenvectors();
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = computeEigenvectors;
-
- return *this;
-}
-
-
-template<typename MatrixType>
-void EigenSolver<MatrixType>::doComputeEigenvectors()
-{
- using std::abs;
- const Index size = m_eivec.cols();
- const Scalar eps = NumTraits<Scalar>::epsilon();
-
- // inefficient! this is already computed in RealSchur
- Scalar norm(0);
- for (Index j = 0; j < size; ++j)
- {
- norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
- }
-
- // Backsubstitute to find vectors of upper triangular form
- if (norm == Scalar(0))
- {
- return;
- }
-
- for (Index n = size-1; n >= 0; n--)
- {
- Scalar p = m_eivalues.coeff(n).real();
- Scalar q = m_eivalues.coeff(n).imag();
-
- // Scalar vector
- if (q == Scalar(0))
- {
- Scalar lastr(0), lastw(0);
- Index l = n;
-
- m_matT.coeffRef(n,n) = Scalar(1);
- for (Index i = n-1; i >= 0; i--)
- {
- Scalar w = m_matT.coeff(i,i) - p;
- Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
-
- if (m_eivalues.coeff(i).imag() < Scalar(0))
- {
- lastw = w;
- lastr = r;
- }
- else
- {
- l = i;
- if (m_eivalues.coeff(i).imag() == Scalar(0))
- {
- if (w != Scalar(0))
- m_matT.coeffRef(i,n) = -r / w;
- else
- m_matT.coeffRef(i,n) = -r / (eps * norm);
- }
- else // Solve real equations
- {
- Scalar x = m_matT.coeff(i,i+1);
- Scalar y = m_matT.coeff(i+1,i);
- Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
- Scalar t = (x * lastr - lastw * r) / denom;
- m_matT.coeffRef(i,n) = t;
- if (abs(x) > abs(lastw))
- m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
- else
- m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
- }
-
- // Overflow control
- Scalar t = abs(m_matT.coeff(i,n));
- if ((eps * t) * t > Scalar(1))
- m_matT.col(n).tail(size-i) /= t;
- }
- }
- }
- else if (q < Scalar(0) && n > 0) // Complex vector
- {
- Scalar lastra(0), lastsa(0), lastw(0);
- Index l = n-1;
-
- // Last vector component imaginary so matrix is triangular
- if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
- {
- m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
- m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
- }
- else
- {
- ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
- m_matT.coeffRef(n-1,n-1) = numext::real(cc);
- m_matT.coeffRef(n-1,n) = numext::imag(cc);
- }
- m_matT.coeffRef(n,n-1) = Scalar(0);
- m_matT.coeffRef(n,n) = Scalar(1);
- for (Index i = n-2; i >= 0; i--)
- {
- Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
- Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
- Scalar w = m_matT.coeff(i,i) - p;
-
- if (m_eivalues.coeff(i).imag() < Scalar(0))
- {
- lastw = w;
- lastra = ra;
- lastsa = sa;
- }
- else
- {
- l = i;
- if (m_eivalues.coeff(i).imag() == RealScalar(0))
- {
- ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
- m_matT.coeffRef(i,n-1) = numext::real(cc);
- m_matT.coeffRef(i,n) = numext::imag(cc);
- }
- else
- {
- // Solve complex equations
- Scalar x = m_matT.coeff(i,i+1);
- Scalar y = m_matT.coeff(i+1,i);
- Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
- Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
- if ((vr == Scalar(0)) && (vi == Scalar(0)))
- vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
-
- ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
- m_matT.coeffRef(i,n-1) = numext::real(cc);
- m_matT.coeffRef(i,n) = numext::imag(cc);
- if (abs(x) > (abs(lastw) + abs(q)))
- {
- m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
- m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
- }
- else
- {
- cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
- m_matT.coeffRef(i+1,n-1) = numext::real(cc);
- m_matT.coeffRef(i+1,n) = numext::imag(cc);
- }
- }
-
- // Overflow control
- Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
- if ((eps * t) * t > Scalar(1))
- m_matT.block(i, n-1, size-i, 2) /= t;
-
- }
- }
-
- // We handled a pair of complex conjugate eigenvalues, so need to skip them both
- n--;
- }
- else
- {
- eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
- }
- }
-
- // Back transformation to get eigenvectors of original matrix
- for (Index j = size-1; j >= 0; j--)
- {
- m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
- m_eivec.col(j) = m_tmp;
- }
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_EIGENSOLVER_H