summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h977
1 files changed, 0 insertions, 977 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h
deleted file mode 100644
index c634d7ea0..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/Core/util/Memory.h
+++ /dev/null
@@ -1,977 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
-// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
-// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
-// Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-
-/*****************************************************************************
-*** Platform checks for aligned malloc functions ***
-*****************************************************************************/
-
-#ifndef EIGEN_MEMORY_H
-#define EIGEN_MEMORY_H
-
-#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
-
-// Try to determine automatically if malloc is already aligned.
-
-// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
-// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
-// This is true at least since glibc 2.8.
-// This leaves the question how to detect 64-bit. According to this document,
-// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
-// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
-// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
-#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
- && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
- #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-// FreeBSD 6 seems to have 16-byte aligned malloc
-// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
-// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
-// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
-#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
- #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
- || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \
- || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
- || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
- #define EIGEN_MALLOC_ALREADY_ALIGNED 1
-#else
- #define EIGEN_MALLOC_ALREADY_ALIGNED 0
-#endif
-
-#endif
-
-namespace Eigen {
-
-namespace internal {
-
-EIGEN_DEVICE_FUNC
-inline void throw_std_bad_alloc()
-{
- #ifdef EIGEN_EXCEPTIONS
- throw std::bad_alloc();
- #else
- std::size_t huge = static_cast<std::size_t>(-1);
- new int[huge];
- #endif
-}
-
-/*****************************************************************************
-*** Implementation of handmade aligned functions ***
-*****************************************************************************/
-
-/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
-
-/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
- * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
- */
-inline void* handmade_aligned_malloc(std::size_t size)
-{
- void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES);
- if (original == 0) return 0;
- void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
- *(reinterpret_cast<void**>(aligned) - 1) = original;
- return aligned;
-}
-
-/** \internal Frees memory allocated with handmade_aligned_malloc */
-inline void handmade_aligned_free(void *ptr)
-{
- if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
-}
-
-/** \internal
- * \brief Reallocates aligned memory.
- * Since we know that our handmade version is based on std::malloc
- * we can use std::realloc to implement efficient reallocation.
- */
-inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
-{
- if (ptr == 0) return handmade_aligned_malloc(size);
- void *original = *(reinterpret_cast<void**>(ptr) - 1);
- std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
- original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
- if (original == 0) return 0;
- void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
- void *previous_aligned = static_cast<char *>(original)+previous_offset;
- if(aligned!=previous_aligned)
- std::memmove(aligned, previous_aligned, size);
-
- *(reinterpret_cast<void**>(aligned) - 1) = original;
- return aligned;
-}
-
-/*****************************************************************************
-*** Implementation of portable aligned versions of malloc/free/realloc ***
-*****************************************************************************/
-
-#ifdef EIGEN_NO_MALLOC
-EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
-{
- eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
-}
-#elif defined EIGEN_RUNTIME_NO_MALLOC
-EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
-{
- static bool value = true;
- if (update == 1)
- value = new_value;
- return value;
-}
-EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
-EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
-EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
-{
- eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
-}
-#else
-EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
-{}
-#endif
-
-/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements.
- * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
- */
-EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
-{
- check_that_malloc_is_allowed();
-
- void *result;
- #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
- result = std::malloc(size);
- #if EIGEN_DEFAULT_ALIGN_BYTES==16
- eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator.");
- #endif
- #else
- result = handmade_aligned_malloc(size);
- #endif
-
- if(!result && size)
- throw_std_bad_alloc();
-
- return result;
-}
-
-/** \internal Frees memory allocated with aligned_malloc. */
-EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
-{
- #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
- std::free(ptr);
- #else
- handmade_aligned_free(ptr);
- #endif
-}
-
-/**
- * \internal
- * \brief Reallocates an aligned block of memory.
- * \throws std::bad_alloc on allocation failure
- */
-inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
-{
- EIGEN_UNUSED_VARIABLE(old_size);
-
- void *result;
-#if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
- result = std::realloc(ptr,new_size);
-#else
- result = handmade_aligned_realloc(ptr,new_size,old_size);
-#endif
-
- if (!result && new_size)
- throw_std_bad_alloc();
-
- return result;
-}
-
-/*****************************************************************************
-*** Implementation of conditionally aligned functions ***
-*****************************************************************************/
-
-/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
- * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
- */
-template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
-{
- return aligned_malloc(size);
-}
-
-template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
-{
- check_that_malloc_is_allowed();
-
- void *result = std::malloc(size);
- if(!result && size)
- throw_std_bad_alloc();
- return result;
-}
-
-/** \internal Frees memory allocated with conditional_aligned_malloc */
-template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
-{
- aligned_free(ptr);
-}
-
-template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
-{
- std::free(ptr);
-}
-
-template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
-{
- return aligned_realloc(ptr, new_size, old_size);
-}
-
-template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
-{
- return std::realloc(ptr, new_size);
-}
-
-/*****************************************************************************
-*** Construction/destruction of array elements ***
-*****************************************************************************/
-
-/** \internal Destructs the elements of an array.
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
-{
- // always destruct an array starting from the end.
- if(ptr)
- while(size) ptr[--size].~T();
-}
-
-/** \internal Constructs the elements of an array.
- * The \a size parameter tells on how many objects to call the constructor of T.
- */
-template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
-{
- std::size_t i;
- EIGEN_TRY
- {
- for (i = 0; i < size; ++i) ::new (ptr + i) T;
- return ptr;
- }
- EIGEN_CATCH(...)
- {
- destruct_elements_of_array(ptr, i);
- EIGEN_THROW;
- }
- return NULL;
-}
-
-/*****************************************************************************
-*** Implementation of aligned new/delete-like functions ***
-*****************************************************************************/
-
-template<typename T>
-EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
-{
- if(size > std::size_t(-1) / sizeof(T))
- throw_std_bad_alloc();
-}
-
-/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
- * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
- * The default constructor of T is called.
- */
-template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
-{
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
- EIGEN_TRY
- {
- return construct_elements_of_array(result, size);
- }
- EIGEN_CATCH(...)
- {
- aligned_free(result);
- EIGEN_THROW;
- }
- return result;
-}
-
-template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
-{
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
- EIGEN_TRY
- {
- return construct_elements_of_array(result, size);
- }
- EIGEN_CATCH(...)
- {
- conditional_aligned_free<Align>(result);
- EIGEN_THROW;
- }
- return result;
-}
-
-/** \internal Deletes objects constructed with aligned_new
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
-{
- destruct_elements_of_array<T>(ptr, size);
- aligned_free(ptr);
-}
-
-/** \internal Deletes objects constructed with conditional_aligned_new
- * The \a size parameters tells on how many objects to call the destructor of T.
- */
-template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
-{
- destruct_elements_of_array<T>(ptr, size);
- conditional_aligned_free<Align>(ptr);
-}
-
-template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
-{
- check_size_for_overflow<T>(new_size);
- check_size_for_overflow<T>(old_size);
- if(new_size < old_size)
- destruct_elements_of_array(pts+new_size, old_size-new_size);
- T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
- if(new_size > old_size)
- {
- EIGEN_TRY
- {
- construct_elements_of_array(result+old_size, new_size-old_size);
- }
- EIGEN_CATCH(...)
- {
- conditional_aligned_free<Align>(result);
- EIGEN_THROW;
- }
- }
- return result;
-}
-
-
-template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
-{
- if(size==0)
- return 0; // short-cut. Also fixes Bug 884
- check_size_for_overflow<T>(size);
- T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
- if(NumTraits<T>::RequireInitialization)
- {
- EIGEN_TRY
- {
- construct_elements_of_array(result, size);
- }
- EIGEN_CATCH(...)
- {
- conditional_aligned_free<Align>(result);
- EIGEN_THROW;
- }
- }
- return result;
-}
-
-template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
-{
- check_size_for_overflow<T>(new_size);
- check_size_for_overflow<T>(old_size);
- if(NumTraits<T>::RequireInitialization && (new_size < old_size))
- destruct_elements_of_array(pts+new_size, old_size-new_size);
- T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
- if(NumTraits<T>::RequireInitialization && (new_size > old_size))
- {
- EIGEN_TRY
- {
- construct_elements_of_array(result+old_size, new_size-old_size);
- }
- EIGEN_CATCH(...)
- {
- conditional_aligned_free<Align>(result);
- EIGEN_THROW;
- }
- }
- return result;
-}
-
-template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
-{
- if(NumTraits<T>::RequireInitialization)
- destruct_elements_of_array<T>(ptr, size);
- conditional_aligned_free<Align>(ptr);
-}
-
-/****************************************************************************/
-
-/** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment.
- *
- * \tparam Alignment requested alignment in Bytes.
- * \param array the address of the start of the array
- * \param size the size of the array
- *
- * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
- * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
- * packet size for the given scalar type is 1, then everything is considered well-aligned.
- *
- * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
- * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
- * example with Scalar=double on certain 32-bit platforms, see bug #79.
- *
- * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
- * \sa first_default_aligned()
- */
-template<int Alignment, typename Scalar, typename Index>
-EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
-{
- const Index ScalarSize = sizeof(Scalar);
- const Index AlignmentSize = Alignment / ScalarSize;
- const Index AlignmentMask = AlignmentSize-1;
-
- if(AlignmentSize<=1)
- {
- // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
- // so that all elements of the array have the same alignment.
- return 0;
- }
- else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
- {
- // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
- // Consequently, no element of the array is well aligned.
- return size;
- }
- else
- {
- Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
- return (first < size) ? first : size;
- }
-}
-
-/** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement.
- * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
-template<typename Scalar, typename Index>
-EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
-{
- typedef typename packet_traits<Scalar>::type DefaultPacketType;
- return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
-}
-
-/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
- */
-template<typename Index>
-inline Index first_multiple(Index size, Index base)
-{
- return ((size+base-1)/base)*base;
-}
-
-// std::copy is much slower than memcpy, so let's introduce a smart_copy which
-// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
-template<typename T, bool UseMemcpy> struct smart_copy_helper;
-
-template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
-{
- smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
-}
-
-template<typename T> struct smart_copy_helper<T,true> {
- EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
- {
- IntPtr size = IntPtr(end)-IntPtr(start);
- if(size==0) return;
- eigen_internal_assert(start!=0 && end!=0 && target!=0);
- memcpy(target, start, size);
- }
-};
-
-template<typename T> struct smart_copy_helper<T,false> {
- EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
- { std::copy(start, end, target); }
-};
-
-// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
-template<typename T, bool UseMemmove> struct smart_memmove_helper;
-
-template<typename T> void smart_memmove(const T* start, const T* end, T* target)
-{
- smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
-}
-
-template<typename T> struct smart_memmove_helper<T,true> {
- static inline void run(const T* start, const T* end, T* target)
- {
- IntPtr size = IntPtr(end)-IntPtr(start);
- if(size==0) return;
- eigen_internal_assert(start!=0 && end!=0 && target!=0);
- std::memmove(target, start, size);
- }
-};
-
-template<typename T> struct smart_memmove_helper<T,false> {
- static inline void run(const T* start, const T* end, T* target)
- {
- if (UIntPtr(target) < UIntPtr(start))
- {
- std::copy(start, end, target);
- }
- else
- {
- std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
- std::copy_backward(start, end, target + count);
- }
- }
-};
-
-
-/*****************************************************************************
-*** Implementation of runtime stack allocation (falling back to malloc) ***
-*****************************************************************************/
-
-// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
-// to the appropriate stack allocation function
-#ifndef EIGEN_ALLOCA
- #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
- #define EIGEN_ALLOCA alloca
- #elif EIGEN_COMP_MSVC
- #define EIGEN_ALLOCA _alloca
- #endif
-#endif
-
-// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
-// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
-template<typename T> class aligned_stack_memory_handler : noncopyable
-{
- public:
- /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
- * Note that \a ptr can be 0 regardless of the other parameters.
- * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
- * In this case, the buffer elements will also be destructed when this handler will be destructed.
- * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
- **/
- aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
- : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
- {
- if(NumTraits<T>::RequireInitialization && m_ptr)
- Eigen::internal::construct_elements_of_array(m_ptr, size);
- }
- ~aligned_stack_memory_handler()
- {
- if(NumTraits<T>::RequireInitialization && m_ptr)
- Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
- if(m_deallocate)
- Eigen::internal::aligned_free(m_ptr);
- }
- protected:
- T* m_ptr;
- std::size_t m_size;
- bool m_deallocate;
-};
-
-template<typename T> class scoped_array : noncopyable
-{
- T* m_ptr;
-public:
- explicit scoped_array(std::ptrdiff_t size)
- {
- m_ptr = new T[size];
- }
- ~scoped_array()
- {
- delete[] m_ptr;
- }
- T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
- const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
- T* &ptr() { return m_ptr; }
- const T* ptr() const { return m_ptr; }
- operator const T*() const { return m_ptr; }
-};
-
-template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
-{
- std::swap(a.ptr(),b.ptr());
-}
-
-} // end namespace internal
-
-/** \internal
- * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
- * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
- * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
- * The allocated buffer is automatically deleted when exiting the scope of this declaration.
- * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
- * Here is an example:
- * \code
- * {
- * ei_declare_aligned_stack_constructed_variable(float,data,size,0);
- * // use data[0] to data[size-1]
- * }
- * \endcode
- * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
- */
-#ifdef EIGEN_ALLOCA
-
- #if EIGEN_DEFAULT_ALIGN_BYTES>0
- // We always manually re-align the result of EIGEN_ALLOCA.
- // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
- #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
- #else
- #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
- #endif
-
- #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
- Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
- TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
- : reinterpret_cast<TYPE*>( \
- (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
- : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \
- Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
-
-#else
-
- #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
- Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
- TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \
- Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
-
-#endif
-
-
-/*****************************************************************************
-*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
-*****************************************************************************/
-
-#if EIGEN_MAX_ALIGN_BYTES!=0
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
- EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
- EIGEN_CATCH (...) { return 0; } \
- }
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
- void *operator new(std::size_t size) { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- } \
- void *operator new[](std::size_t size) { \
- return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
- } \
- void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
- /* in-place new and delete. since (at least afaik) there is no actual */ \
- /* memory allocated we can safely let the default implementation handle */ \
- /* this particular case. */ \
- static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
- static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
- void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
- void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
- /* nothrow-new (returns zero instead of std::bad_alloc) */ \
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
- void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
- Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
- } \
- typedef void eigen_aligned_operator_new_marker_type;
-#else
- #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
-#endif
-
-#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
-#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0)))
-
-/****************************************************************************/
-
-/** \class aligned_allocator
-* \ingroup Core_Module
-*
-* \brief STL compatible allocator to use with with 16 byte aligned types
-*
-* Example:
-* \code
-* // Matrix4f requires 16 bytes alignment:
-* std::map< int, Matrix4f, std::less<int>,
-* aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
-* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
-* std::map< int, Vector3f > my_map_vec3;
-* \endcode
-*
-* \sa \blank \ref TopicStlContainers.
-*/
-template<class T>
-class aligned_allocator : public std::allocator<T>
-{
-public:
- typedef std::size_t size_type;
- typedef std::ptrdiff_t difference_type;
- typedef T* pointer;
- typedef const T* const_pointer;
- typedef T& reference;
- typedef const T& const_reference;
- typedef T value_type;
-
- template<class U>
- struct rebind
- {
- typedef aligned_allocator<U> other;
- };
-
- aligned_allocator() : std::allocator<T>() {}
-
- aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
-
- template<class U>
- aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
-
- ~aligned_allocator() {}
-
- pointer allocate(size_type num, const void* /*hint*/ = 0)
- {
- internal::check_size_for_overflow<T>(num);
- return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
- }
-
- void deallocate(pointer p, size_type /*num*/)
- {
- internal::aligned_free(p);
- }
-};
-
-//---------- Cache sizes ----------
-
-#if !defined(EIGEN_NO_CPUID)
-# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
-# if defined(__PIC__) && EIGEN_ARCH_i386
- // Case for x86 with PIC
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
-# elif defined(__PIC__) && EIGEN_ARCH_x86_64
- // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
- // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
-# else
- // Case for x86_64 or x86 w/o PIC
-# define EIGEN_CPUID(abcd,func,id) \
- __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
-# endif
-# elif EIGEN_COMP_MSVC
-# if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
-# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
-# endif
-# endif
-#endif
-
-namespace internal {
-
-#ifdef EIGEN_CPUID
-
-inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
-{
- return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
-}
-
-inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- l1 = l2 = l3 = 0;
- int cache_id = 0;
- int cache_type = 0;
- do {
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x4,cache_id);
- cache_type = (abcd[0] & 0x0F) >> 0;
- if(cache_type==1||cache_type==3) // data or unified cache
- {
- int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5]
- int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
- int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
- int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0]
- int sets = (abcd[2]); // C[31:0]
-
- int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
-
- switch(cache_level)
- {
- case 1: l1 = cache_size; break;
- case 2: l2 = cache_size; break;
- case 3: l3 = cache_size; break;
- default: break;
- }
- }
- cache_id++;
- } while(cache_type>0 && cache_id<16);
-}
-
-inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- l1 = l2 = l3 = 0;
- EIGEN_CPUID(abcd,0x00000002,0);
- unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
- bool check_for_p2_core2 = false;
- for(int i=0; i<14; ++i)
- {
- switch(bytes[i])
- {
- case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines
- case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines
- case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines
- case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
- case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
- case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines
- case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines
- case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
- case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
- case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
- case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
- case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
- case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
- case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
- case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
- case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
- case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
- case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
- case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
- case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core)
- case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
- case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
- case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
- case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
- case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
- case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
- case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
- case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
- case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
- case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
- case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
- case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
- case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
- case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
- case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
- case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
- case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
- case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
- case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
- case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
- case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
- case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
- case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
- case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
- case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
- case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
- case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
- case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
- case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
- case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
- case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
-
- default: break;
- }
- }
- if(check_for_p2_core2 && l2 == l3)
- l3 = 0;
- l1 *= 1024;
- l2 *= 1024;
- l3 *= 1024;
-}
-
-inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
-{
- if(max_std_funcs>=4)
- queryCacheSizes_intel_direct(l1,l2,l3);
- else
- queryCacheSizes_intel_codes(l1,l2,l3);
-}
-
-inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
-{
- int abcd[4];
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x80000005,0);
- l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
- abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
- EIGEN_CPUID(abcd,0x80000006,0);
- l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
- l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
-}
-#endif
-
-/** \internal
- * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
-inline void queryCacheSizes(int& l1, int& l2, int& l3)
-{
- #ifdef EIGEN_CPUID
- int abcd[4];
- const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
- const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
- const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
-
- // identify the CPU vendor
- EIGEN_CPUID(abcd,0x0,0);
- int max_std_funcs = abcd[1];
- if(cpuid_is_vendor(abcd,GenuineIntel))
- queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
- else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
- queryCacheSizes_amd(l1,l2,l3);
- else
- // by default let's use Intel's API
- queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
-
- // here is the list of other vendors:
-// ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
-// ||cpuid_is_vendor(abcd,"CyrixInstead")
-// ||cpuid_is_vendor(abcd,"CentaurHauls")
-// ||cpuid_is_vendor(abcd,"GenuineTMx86")
-// ||cpuid_is_vendor(abcd,"TransmetaCPU")
-// ||cpuid_is_vendor(abcd,"RiseRiseRise")
-// ||cpuid_is_vendor(abcd,"Geode by NSC")
-// ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
-// ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
-// ||cpuid_is_vendor(abcd,"NexGenDriven")
- #else
- l1 = l2 = l3 = -1;
- #endif
-}
-
-/** \internal
- * \returns the size in Bytes of the L1 data cache */
-inline int queryL1CacheSize()
-{
- int l1(-1), l2, l3;
- queryCacheSizes(l1,l2,l3);
- return l1;
-}
-
-/** \internal
- * \returns the size in Bytes of the L2 or L3 cache if this later is present */
-inline int queryTopLevelCacheSize()
-{
- int l1, l2(-1), l3(-1);
- queryCacheSizes(l1,l2,l3);
- return (std::max)(l2,l3);
-}
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_MEMORY_H