summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Core/functors')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/AssignmentFunctors.h168
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/BinaryFunctors.h482
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/NullaryFunctors.h188
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/StlFunctors.h132
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/TernaryFunctors.h25
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/UnaryFunctors.h823
6 files changed, 1818 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/AssignmentFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/AssignmentFunctors.h
new file mode 100644
index 000000000..4153b877c
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/AssignmentFunctors.h
@@ -0,0 +1,168 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ASSIGNMENT_FUNCTORS_H
+#define EIGEN_ASSIGNMENT_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a = b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,b); }
+};
+
+// Empty overload for void type (used by PermutationMatrix)
+template<typename DstScalar> struct assign_op<DstScalar,void> {};
+
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::Vectorizable && packet_traits<SrcScalar>::Vectorizable
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with addition
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct add_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(add_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a += b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::padd(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<add_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasAdd
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with subtraction
+ *
+ */
+template<typename DstScalar,typename SrcScalar> struct sub_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(sub_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a -= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::psub(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar,typename SrcScalar>
+struct functor_traits<sub_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasSub
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with multiplication
+ *
+ */
+template<typename DstScalar, typename SrcScalar=DstScalar>
+struct mul_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<mul_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasMul
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with diviving
+ *
+ */
+template<typename DstScalar, typename SrcScalar=DstScalar> struct div_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(div_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a /= b; }
+
+ template<int Alignment, typename Packet>
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pdiv(internal::ploadt<Packet,Alignment>(a),b)); }
+};
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<div_assign_op<DstScalar,SrcScalar> > {
+ enum {
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasDiv
+ };
+};
+
+/** \internal
+ * \brief Template functor for scalar/packet assignment with swapping
+ *
+ * It works as follow. For a non-vectorized evaluation loop, we have:
+ * for(i) func(A.coeffRef(i), B.coeff(i));
+ * where B is a SwapWrapper expression. The trick is to make SwapWrapper::coeff behaves like a non-const coeffRef.
+ * Actually, SwapWrapper might not even be needed since even if B is a plain expression, since it has to be writable
+ * B.coeff already returns a const reference to the underlying scalar value.
+ *
+ * The case of a vectorized loop is more tricky:
+ * for(i,j) func.assignPacket<A_Align>(&A.coeffRef(i,j), B.packet<B_Align>(i,j));
+ * Here, B must be a SwapWrapper whose packet function actually returns a proxy object holding a Scalar*,
+ * the actual alignment and Packet type.
+ *
+ */
+template<typename Scalar> struct swap_assign_op {
+
+ EIGEN_EMPTY_STRUCT_CTOR(swap_assign_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const
+ {
+#ifdef __CUDACC__
+ // FIXME is there some kind of cuda::swap?
+ Scalar t=b; const_cast<Scalar&>(b)=a; a=t;
+#else
+ using std::swap;
+ swap(a,const_cast<Scalar&>(b));
+#endif
+ }
+};
+template<typename Scalar>
+struct functor_traits<swap_assign_op<Scalar> > {
+ enum {
+ Cost = 3 * NumTraits<Scalar>::ReadCost,
+ PacketAccess = packet_traits<Scalar>::Vectorizable
+ };
+};
+
+} // namespace internal
+
+} // namespace Eigen
+
+#endif // EIGEN_ASSIGNMENT_FUNCTORS_H
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/BinaryFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/BinaryFunctors.h
new file mode 100644
index 000000000..96747bac7
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/BinaryFunctors.h
@@ -0,0 +1,482 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_BINARY_FUNCTORS_H
+#define EIGEN_BINARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- associative binary functors ----------
+
+template<typename Arg1, typename Arg2>
+struct binary_op_base
+{
+ typedef Arg1 first_argument_type;
+ typedef Arg2 second_argument_type;
+};
+
+/** \internal
+ * \brief Template functor to compute the sum of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_sum_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_sum_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
+#else
+ scalar_sum_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::padd(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
+ { return internal::predux(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_sum_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2, // rough estimate!
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAdd && packet_traits<RhsScalar>::HasAdd
+ // TODO vectorize mixed sum
+ };
+};
+
+/** \internal
+ * \brief Template specialization to deprecate the summation of boolean expressions.
+ * This is required to solve Bug 426.
+ * \sa DenseBase::count(), DenseBase::any(), ArrayBase::cast(), MatrixBase::cast()
+ */
+template<> struct scalar_sum_op<bool,bool> : scalar_sum_op<int,int> {
+ EIGEN_DEPRECATED
+ scalar_sum_op() {}
+};
+
+
+/** \internal
+ * \brief Template functor to compute the product of two scalars
+ *
+ * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_product_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_product_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
+#else
+ scalar_product_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pmul(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
+ { return internal::predux_mul(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
+ // TODO vectorize mixed product
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the conjugate product of two scalars
+ *
+ * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_conj_product_op : binary_op_base<LhsScalar,RhsScalar>
+{
+
+ enum {
+ Conj = NumTraits<LhsScalar>::IsComplex
+ };
+
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_conj_product_op>::ReturnType result_type;
+
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
+ { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = NumTraits<LhsScalar>::MulCost,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the min of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_min_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_min_op>::ReturnType result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::mini(a, b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pmin(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
+ { return internal::predux_min(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_min_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMin
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the max of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_max_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_max_op>::ReturnType result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::maxi(a, b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pmax(a,b); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
+ { return internal::predux_max(a); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_max_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMax
+ };
+};
+
+/** \internal
+ * \brief Template functors for comparison of two scalars
+ * \todo Implement packet-comparisons
+ */
+template<typename LhsScalar, typename RhsScalar, ComparisonName cmp> struct scalar_cmp_op;
+
+template<typename LhsScalar, typename RhsScalar, ComparisonName cmp>
+struct functor_traits<scalar_cmp_op<LhsScalar,RhsScalar, cmp> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = false
+ };
+};
+
+template<ComparisonName Cmp, typename LhsScalar, typename RhsScalar>
+struct result_of<scalar_cmp_op<LhsScalar, RhsScalar, Cmp>(LhsScalar,RhsScalar)> {
+ typedef bool type;
+};
+
+
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_EQ> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LT> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LE> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GT> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GE> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_UNORD> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);}
+};
+template<typename LhsScalar, typename RhsScalar>
+struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_NEQ> : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef bool result_type;
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;}
+};
+
+
+/** \internal
+ * \brief Template functor to compute the hypot of two scalars
+ *
+ * \sa MatrixBase::stableNorm(), class Redux
+ */
+template<typename Scalar>
+struct scalar_hypot_op<Scalar,Scalar> : binary_op_base<Scalar,Scalar>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
+// typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
+ {
+ EIGEN_USING_STD_MATH(sqrt)
+ Scalar p, qp;
+ if(_x>_y)
+ {
+ p = _x;
+ qp = _y / p;
+ }
+ else
+ {
+ p = _y;
+ qp = _x / p;
+ }
+ return p * sqrt(Scalar(1) + qp*qp);
+ }
+};
+template<typename Scalar>
+struct functor_traits<scalar_hypot_op<Scalar,Scalar> > {
+ enum
+ {
+ Cost = 3 * NumTraits<Scalar>::AddCost +
+ 2 * NumTraits<Scalar>::MulCost +
+ 2 * scalar_div_cost<Scalar,false>::value,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the pow of two scalars
+ */
+template<typename Scalar, typename Exponent>
+struct scalar_pow_op : binary_op_base<Scalar,Exponent>
+{
+ typedef typename ScalarBinaryOpTraits<Scalar,Exponent,scalar_pow_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_pow_op)
+#else
+ scalar_pow_op() {
+ typedef Scalar LhsScalar;
+ typedef Exponent RhsScalar;
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC
+ inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); }
+};
+template<typename Scalar, typename Exponent>
+struct functor_traits<scalar_pow_op<Scalar,Exponent> > {
+ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
+};
+
+
+
+//---------- non associative binary functors ----------
+
+/** \internal
+ * \brief Template functor to compute the difference of two scalars
+ *
+ * \sa class CwiseBinaryOp, MatrixBase::operator-
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_difference_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_difference_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
+#else
+ scalar_difference_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::psub(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_difference_op<LhsScalar,RhsScalar> > {
+ enum {
+ Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasSub && packet_traits<RhsScalar>::HasSub
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the quotient of two scalars
+ *
+ * \sa class CwiseBinaryOp, Cwise::operator/()
+ */
+template<typename LhsScalar,typename RhsScalar>
+struct scalar_quotient_op : binary_op_base<LhsScalar,RhsScalar>
+{
+ typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_quotient_op>::ReturnType result_type;
+#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
+#else
+ scalar_quotient_op() {
+ EIGEN_SCALAR_BINARY_OP_PLUGIN
+ }
+#endif
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
+ { return internal::pdiv(a,b); }
+};
+template<typename LhsScalar,typename RhsScalar>
+struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
+ typedef typename scalar_quotient_op<LhsScalar,RhsScalar>::result_type result_type;
+ enum {
+ PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv,
+ Cost = scalar_div_cost<result_type,PacketAccess>::value
+ };
+};
+
+
+
+/** \internal
+ * \brief Template functor to compute the and of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator&&
+ */
+struct scalar_boolean_and_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
+};
+template<> struct functor_traits<scalar_boolean_and_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the or of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator||
+ */
+struct scalar_boolean_or_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
+};
+template<> struct functor_traits<scalar_boolean_or_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the xor of two booleans
+ *
+ * \sa class CwiseBinaryOp, ArrayBase::operator^
+ */
+struct scalar_boolean_xor_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_xor_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; }
+};
+template<> struct functor_traits<scalar_boolean_xor_op> {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = false
+ };
+};
+
+
+
+//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
+
+// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value.
+// They are analogues to std::binder1st/binder2nd but with the following differences:
+// - they are compatible with packetOp
+// - they are portable across C++ versions (the std::binder* are deprecated in C++11)
+template<typename BinaryOp> struct bind1st_op : BinaryOp {
+
+ typedef typename BinaryOp::first_argument_type first_argument_type;
+ typedef typename BinaryOp::second_argument_type second_argument_type;
+ typedef typename BinaryOp::result_type result_type;
+
+ bind1st_op(const first_argument_type &val) : m_value(val) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const
+ { return BinaryOp::packetOp(internal::pset1<Packet>(m_value), b); }
+
+ first_argument_type m_value;
+};
+template<typename BinaryOp> struct functor_traits<bind1st_op<BinaryOp> > : functor_traits<BinaryOp> {};
+
+
+template<typename BinaryOp> struct bind2nd_op : BinaryOp {
+
+ typedef typename BinaryOp::first_argument_type first_argument_type;
+ typedef typename BinaryOp::second_argument_type second_argument_type;
+ typedef typename BinaryOp::result_type result_type;
+
+ bind2nd_op(const second_argument_type &val) : m_value(val) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); }
+
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return BinaryOp::packetOp(a,internal::pset1<Packet>(m_value)); }
+
+ second_argument_type m_value;
+};
+template<typename BinaryOp> struct functor_traits<bind2nd_op<BinaryOp> > : functor_traits<BinaryOp> {};
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_BINARY_FUNCTORS_H
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/NullaryFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/NullaryFunctors.h
new file mode 100644
index 000000000..b03be0269
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/NullaryFunctors.h
@@ -0,0 +1,188 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_NULLARY_FUNCTORS_H
+#define EIGEN_NULLARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename Scalar>
+struct scalar_constant_op {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
+ template<typename PacketType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
+ const Scalar m_other;
+};
+template<typename Scalar>
+struct functor_traits<scalar_constant_op<Scalar> >
+{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
+ PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
+
+template<typename Scalar> struct scalar_identity_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_identity_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
+
+template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
+
+template <typename Scalar, typename Packet>
+struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
+{
+ linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
+ m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
+ m_flip(numext::abs(high)<numext::abs(low))
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ if(m_flip)
+ return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step);
+ else
+ return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step);
+ }
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
+ {
+ // Principle:
+ // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
+ if(m_flip)
+ {
+ Packet pi = plset<Packet>(Scalar(i-m_size1));
+ Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
+ if(i==0)
+ res = pinsertfirst(res, m_low);
+ return res;
+ }
+ else
+ {
+ Packet pi = plset<Packet>(Scalar(i));
+ Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
+ if(i==m_size1-unpacket_traits<Packet>::size+1)
+ res = pinsertlast(res, m_high);
+ return res;
+ }
+ }
+
+ const Scalar m_low;
+ const Scalar m_high;
+ const Index m_size1;
+ const Scalar m_step;
+ const bool m_flip;
+};
+
+template <typename Scalar, typename Packet>
+struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
+{
+ linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
+ m_low(low),
+ m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
+ m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
+ m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const Scalar operator() (IndexType i) const
+ {
+ if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
+ else return m_low + convert_index<Scalar>(i)*m_multiplier;
+ }
+
+ const Scalar m_low;
+ const Scalar m_multiplier;
+ const Scalar m_divisor;
+ const bool m_use_divisor;
+};
+
+// ----- Linspace functor ----------------------------------------------------------------
+
+// Forward declaration (we default to random access which does not really give
+// us a speed gain when using packet access but it allows to use the functor in
+// nested expressions).
+template <typename Scalar, typename PacketType> struct linspaced_op;
+template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
+{
+ enum
+ {
+ Cost = 1,
+ PacketAccess = (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend,
+ /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
+ IsRepeatable = true
+ };
+};
+template <typename Scalar, typename PacketType> struct linspaced_op
+{
+ linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
+ : impl((num_steps==1 ? high : low),high,num_steps)
+ {}
+
+ template<typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
+
+ template<typename Packet,typename IndexType>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
+
+ // This proxy object handles the actual required temporaries and the different
+ // implementations (integer vs. floating point).
+ const linspaced_op_impl<Scalar,PacketType,NumTraits<Scalar>::IsInteger> impl;
+};
+
+// Linear access is automatically determined from the operator() prototypes available for the given functor.
+// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
+// and linear access is not possible. In all other cases, linear access is enabled.
+// Users should not have to deal with this structure.
+template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
+
+// For unreliable compilers, let's specialize the has_*ary_operator
+// helpers so that at least built-in nullary functors work fine.
+#if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
+
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
+
+template<typename Scalar, typename PacketType,typename IndexType>
+struct has_nullary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
+template<typename Scalar, typename PacketType,typename IndexType>
+struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
+template<typename Scalar, typename PacketType,typename IndexType>
+struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
+
+template<typename Scalar,typename IndexType>
+struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
+template<typename Scalar,typename IndexType>
+struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
+template<typename Scalar,typename IndexType>
+struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_NULLARY_FUNCTORS_H
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/StlFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/StlFunctors.h
new file mode 100644
index 000000000..6df3fa501
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/StlFunctors.h
@@ -0,0 +1,132 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_STL_FUNCTORS_H
+#define EIGEN_STL_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+// default functor traits for STL functors:
+
+template<typename T>
+struct functor_traits<std::multiplies<T> >
+{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::divides<T> >
+{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::plus<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::minus<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::negate<T> >
+{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_or<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_and<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::logical_not<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::greater<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::less<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::greater_equal<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::less_equal<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::equal_to<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::not_equal_to<T> >
+{ enum { Cost = 1, PacketAccess = false }; };
+
+#if (__cplusplus < 201103L) && (EIGEN_COMP_MSVC <= 1900)
+// std::binder* are deprecated since c++11 and will be removed in c++17
+template<typename T>
+struct functor_traits<std::binder2nd<T> >
+{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::binder1st<T> >
+{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
+#endif
+
+template<typename T>
+struct functor_traits<std::unary_negate<T> >
+{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
+
+template<typename T>
+struct functor_traits<std::binary_negate<T> >
+{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
+
+#ifdef EIGEN_STDEXT_SUPPORT
+
+template<typename T0,typename T1>
+struct functor_traits<std::project1st<T0,T1> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::project2nd<T0,T1> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::select2nd<std::pair<T0,T1> > >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::select1st<std::pair<T0,T1> > >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+template<typename T0,typename T1>
+struct functor_traits<std::unary_compose<T0,T1> >
+{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
+
+template<typename T0,typename T1,typename T2>
+struct functor_traits<std::binary_compose<T0,T1,T2> >
+{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
+
+#endif // EIGEN_STDEXT_SUPPORT
+
+// allow to add new functors and specializations of functor_traits from outside Eigen.
+// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
+#ifdef EIGEN_FUNCTORS_PLUGIN
+#include EIGEN_FUNCTORS_PLUGIN
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_STL_FUNCTORS_H
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/TernaryFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/TernaryFunctors.h
new file mode 100644
index 000000000..b254e96c6
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/TernaryFunctors.h
@@ -0,0 +1,25 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TERNARY_FUNCTORS_H
+#define EIGEN_TERNARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- associative ternary functors ----------
+
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_TERNARY_FUNCTORS_H
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/UnaryFunctors.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/UnaryFunctors.h
new file mode 100644
index 000000000..581a3c93a
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/functors/UnaryFunctors.h
@@ -0,0 +1,823 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_UNARY_FUNCTORS_H
+#define EIGEN_UNARY_FUNCTORS_H
+
+namespace Eigen {
+
+namespace internal {
+
+// Copied from unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
+// TODO: remove or update after upstream
+/** \internal
+ * \brief Template functor to compute the sigmoid of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sigmoid()
+ */
+template <typename T>
+struct scalar_sigmoid_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
+ const T one = T(1);
+ return one / (one + numext::exp(-x));
+ }
+
+ template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Packet packetOp(const Packet& x) const {
+ const Packet one = pset1<Packet>(T(1));
+ return pdiv(one, padd(one, pexp(pnegate(x))));
+ }
+};
+
+template <typename T>
+struct functor_traits<scalar_sigmoid_op<T> > {
+ enum {
+ Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
+ PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
+ packet_traits<T>::HasNegate && packet_traits<T>::HasExp
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the opposite of a scalar
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::operator-
+ */
+template<typename Scalar> struct scalar_opposite_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pnegate(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_opposite_op<Scalar> >
+{ enum {
+ Cost = NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasNegate };
+};
+
+/** \internal
+ * \brief Template functor to compute the absolute value of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::abs
+ */
+template<typename Scalar> struct scalar_abs_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pabs(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_abs_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasAbs
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the score of a scalar, to chose a pivot
+ *
+ * \sa class CwiseUnaryOp
+ */
+template<typename Scalar> struct scalar_score_coeff_op : scalar_abs_op<Scalar>
+{
+ typedef void Score_is_abs;
+};
+template<typename Scalar>
+struct functor_traits<scalar_score_coeff_op<Scalar> > : functor_traits<scalar_abs_op<Scalar> > {};
+
+/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */
+template<typename Scalar, typename=void> struct abs_knowing_score
+{
+ EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ template<typename Score>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
+};
+template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
+{
+ EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ template<typename Scal>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; }
+};
+
+/** \internal
+ * \brief Template functor to compute the squared absolute value of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::abs2
+ */
+template<typename Scalar> struct scalar_abs2_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_abs2_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
+
+/** \internal
+ * \brief Template functor to compute the conjugate of a complex value
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::conjugate()
+ */
+template<typename Scalar> struct scalar_conjugate_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_conjugate_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
+ PacketAccess = packet_traits<Scalar>::HasConj
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the phase angle of a complex
+ *
+ * \sa class CwiseUnaryOp, Cwise::arg
+ */
+template<typename Scalar> struct scalar_arg_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
+ { return internal::parg(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_arg_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasArg
+ };
+};
+/** \internal
+ * \brief Template functor to cast a scalar to another type
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::cast()
+ */
+template<typename Scalar, typename NewType>
+struct scalar_cast_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
+ typedef NewType result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
+};
+template<typename Scalar, typename NewType>
+struct functor_traits<scalar_cast_op<Scalar,NewType> >
+{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the real part of a complex
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::real()
+ */
+template<typename Scalar>
+struct scalar_real_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_real_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the imaginary part of a complex
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::imag()
+ */
+template<typename Scalar>
+struct scalar_imag_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_imag_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the real part of a complex as a reference
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::real()
+ */
+template<typename Scalar>
+struct scalar_real_ref_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_real_ref_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ * \brief Template functor to extract the imaginary part of a complex as a reference
+ *
+ * \sa class CwiseUnaryOp, MatrixBase::imag()
+ */
+template<typename Scalar>
+struct scalar_imag_ref_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
+ typedef typename NumTraits<Scalar>::Real result_type;
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_imag_ref_op<Scalar> >
+{ enum { Cost = 0, PacketAccess = false }; };
+
+/** \internal
+ *
+ * \brief Template functor to compute the exponential of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::exp()
+ */
+template<typename Scalar> struct scalar_exp_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_exp_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasExp,
+ // The following numbers are based on the AVX implementation.
+#ifdef EIGEN_VECTORIZE_FMA
+ // Haswell can issue 2 add/mul/madd per cycle.
+ Cost =
+ (sizeof(Scalar) == 4
+ // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
+ ? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
+ // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
+ : (14 * NumTraits<Scalar>::AddCost +
+ 6 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
+#else
+ Cost =
+ (sizeof(Scalar) == 4
+ // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
+ ? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
+ // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
+ : (23 * NumTraits<Scalar>::AddCost +
+ 12 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
+#endif
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the logarithm of a scalar
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::log()
+ */
+template<typename Scalar> struct scalar_log_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_log_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasLog,
+ Cost =
+ (PacketAccess
+ // The following numbers are based on the AVX implementation.
+#ifdef EIGEN_VECTORIZE_FMA
+ // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
+ ? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
+#else
+ // 8 pmadd, 6 pmul, 8 padd/psub, 20 other
+ ? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
+#endif
+ // Measured cost of std::log.
+ : sizeof(Scalar)==4 ? 40 : 85)
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the logarithm of 1 plus a scalar value
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::log1p()
+ */
+template<typename Scalar> struct scalar_log1p_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_log1p_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasLog1p,
+ Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of log1p
+ };
+};
+
+/** \internal
+ *
+ * \brief Template functor to compute the base-10 logarithm of a scalar
+ *
+ * \sa class CwiseUnaryOp, Cwise::log10()
+ */
+template<typename Scalar> struct scalar_log10_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_log10_op<Scalar> >
+{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; };
+
+/** \internal
+ * \brief Template functor to compute the square root of a scalar
+ * \sa class CwiseUnaryOp, Cwise::sqrt()
+ */
+template<typename Scalar> struct scalar_sqrt_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
+};
+template <typename Scalar>
+struct functor_traits<scalar_sqrt_op<Scalar> > {
+ enum {
+#if EIGEN_FAST_MATH
+ // The following numbers are based on the AVX implementation.
+ Cost = (sizeof(Scalar) == 8 ? 28
+ // 4 pmul, 1 pmadd, 3 other
+ : (3 * NumTraits<Scalar>::AddCost +
+ 5 * NumTraits<Scalar>::MulCost)),
+#else
+ // The following numbers are based on min VSQRT throughput on Haswell.
+ Cost = (sizeof(Scalar) == 8 ? 28 : 14),
+#endif
+ PacketAccess = packet_traits<Scalar>::HasSqrt
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the reciprocal square root of a scalar
+ * \sa class CwiseUnaryOp, Cwise::rsqrt()
+ */
+template<typename Scalar> struct scalar_rsqrt_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
+};
+
+template<typename Scalar>
+struct functor_traits<scalar_rsqrt_op<Scalar> >
+{ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasRsqrt
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the cosine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::cos()
+ */
+template<typename Scalar> struct scalar_cos_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cos_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCos
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the sine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sin()
+ */
+template<typename Scalar> struct scalar_sin_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sin_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasSin
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the tan of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::tan()
+ */
+template<typename Scalar> struct scalar_tan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_tan_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasTan
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the arc cosine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::acos()
+ */
+template<typename Scalar> struct scalar_acos_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_acos_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasACos
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the arc sine of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::asin()
+ */
+template<typename Scalar> struct scalar_asin_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_asin_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasASin
+ };
+};
+
+
+/** \internal
+ * \brief Template functor to compute the atan of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::atan()
+ */
+template<typename Scalar> struct scalar_atan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_atan_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasATan
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the tanh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::tanh()
+ */
+template <typename Scalar>
+struct scalar_tanh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); }
+};
+
+template <typename Scalar>
+struct functor_traits<scalar_tanh_op<Scalar> > {
+ enum {
+ PacketAccess = packet_traits<Scalar>::HasTanh,
+ Cost = ( (EIGEN_FAST_MATH && is_same<Scalar,float>::value)
+// The following numbers are based on the AVX implementation,
+#ifdef EIGEN_VECTORIZE_FMA
+ // Haswell can issue 2 add/mul/madd per cycle.
+ // 9 pmadd, 2 pmul, 1 div, 2 other
+ ? (2 * NumTraits<Scalar>::AddCost +
+ 6 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
+#else
+ ? (11 * NumTraits<Scalar>::AddCost +
+ 11 * NumTraits<Scalar>::MulCost +
+ scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
+#endif
+ // This number assumes a naive implementation of tanh
+ : (6 * NumTraits<Scalar>::AddCost +
+ 3 * NumTraits<Scalar>::MulCost +
+ 2 * scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value +
+ functor_traits<scalar_exp_op<Scalar> >::Cost))
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the sinh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::sinh()
+ */
+template<typename Scalar> struct scalar_sinh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sinh_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasSinh
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the cosh of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::cosh()
+ */
+template<typename Scalar> struct scalar_cosh_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cosh_op<Scalar> >
+{
+ enum {
+ Cost = 5 * NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCosh
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the inverse of a scalar
+ * \sa class CwiseUnaryOp, Cwise::inverse()
+ */
+template<typename Scalar>
+struct scalar_inverse_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_inverse_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
+
+/** \internal
+ * \brief Template functor to compute the square of a scalar
+ * \sa class CwiseUnaryOp, Cwise::square()
+ */
+template<typename Scalar>
+struct scalar_square_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_square_op<Scalar> >
+{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
+
+/** \internal
+ * \brief Template functor to compute the cube of a scalar
+ * \sa class CwiseUnaryOp, Cwise::cube()
+ */
+template<typename Scalar>
+struct scalar_cube_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
+ EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
+ template<typename Packet>
+ EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
+ { return internal::pmul(a,pmul(a,a)); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_cube_op<Scalar> >
+{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
+
+/** \internal
+ * \brief Template functor to compute the rounded value of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::round()
+ */
+template<typename Scalar> struct scalar_round_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_round_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasRound
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the floor of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::floor()
+ */
+template<typename Scalar> struct scalar_floor_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_floor_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasFloor
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the ceil of a scalar
+ * \sa class CwiseUnaryOp, ArrayBase::ceil()
+ */
+template<typename Scalar> struct scalar_ceil_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_ceil_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = packet_traits<Scalar>::HasCeil
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute whether a scalar is NaN
+ * \sa class CwiseUnaryOp, ArrayBase::isnan()
+ */
+template<typename Scalar> struct scalar_isnan_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isnan)(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isnan_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to check whether a scalar is +/-inf
+ * \sa class CwiseUnaryOp, ArrayBase::isinf()
+ */
+template<typename Scalar> struct scalar_isinf_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isinf)(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isinf_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to check whether a scalar has a finite value
+ * \sa class CwiseUnaryOp, ArrayBase::isfinite()
+ */
+template<typename Scalar> struct scalar_isfinite_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
+ typedef bool result_type;
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isfinite)(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_isfinite_op<Scalar> >
+{
+ enum {
+ Cost = NumTraits<Scalar>::MulCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the logical not of a boolean
+ *
+ * \sa class CwiseUnaryOp, ArrayBase::operator!
+ */
+template<typename Scalar> struct scalar_boolean_not_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; }
+};
+template<typename Scalar>
+struct functor_traits<scalar_boolean_not_op<Scalar> > {
+ enum {
+ Cost = NumTraits<bool>::AddCost,
+ PacketAccess = false
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the signum of a scalar
+ * \sa class CwiseUnaryOp, Cwise::sign()
+ */
+template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
+template<typename Scalar>
+struct scalar_sign_op<Scalar,false> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
+ }
+ //TODO
+ //template <typename Packet>
+ //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
+};
+template<typename Scalar>
+struct scalar_sign_op<Scalar,true> {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
+ {
+ typedef typename NumTraits<Scalar>::Real real_type;
+ real_type aa = numext::abs(a);
+ if (aa==real_type(0))
+ return Scalar(0);
+ aa = real_type(1)/aa;
+ return Scalar(real(a)*aa, imag(a)*aa );
+ }
+ //TODO
+ //template <typename Packet>
+ //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
+};
+template<typename Scalar>
+struct functor_traits<scalar_sign_op<Scalar> >
+{ enum {
+ Cost =
+ NumTraits<Scalar>::IsComplex
+ ? ( 8*NumTraits<Scalar>::MulCost ) // roughly
+ : ( 3*NumTraits<Scalar>::AddCost),
+ PacketAccess = packet_traits<Scalar>::HasSign
+ };
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_FUNCTORS_H