summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h505
1 files changed, 505 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h
new file mode 100644
index 000000000..b6e8f8887
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/Redux.h
@@ -0,0 +1,505 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_REDUX_H
+#define EIGEN_REDUX_H
+
+namespace Eigen {
+
+namespace internal {
+
+// TODO
+// * implement other kind of vectorization
+// * factorize code
+
+/***************************************************************************
+* Part 1 : the logic deciding a strategy for vectorization and unrolling
+***************************************************************************/
+
+template<typename Func, typename Derived>
+struct redux_traits
+{
+public:
+ typedef typename find_best_packet<typename Derived::Scalar,Derived::SizeAtCompileTime>::type PacketType;
+ enum {
+ PacketSize = unpacket_traits<PacketType>::size,
+ InnerMaxSize = int(Derived::IsRowMajor)
+ ? Derived::MaxColsAtCompileTime
+ : Derived::MaxRowsAtCompileTime
+ };
+
+ enum {
+ MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit)
+ && (functor_traits<Func>::PacketAccess),
+ MayLinearVectorize = bool(MightVectorize) && (int(Derived::Flags)&LinearAccessBit),
+ MaySliceVectorize = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize
+ };
+
+public:
+ enum {
+ Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
+ : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
+ : int(DefaultTraversal)
+ };
+
+public:
+ enum {
+ Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost
+ : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost,
+ UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize))
+ };
+
+public:
+ enum {
+ Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling
+ };
+
+#ifdef EIGEN_DEBUG_ASSIGN
+ static void debug()
+ {
+ std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
+ EIGEN_DEBUG_VAR(Derived::Flags)
+ std::cerr.unsetf(std::ios::hex);
+ EIGEN_DEBUG_VAR(InnerMaxSize)
+ EIGEN_DEBUG_VAR(PacketSize)
+ EIGEN_DEBUG_VAR(MightVectorize)
+ EIGEN_DEBUG_VAR(MayLinearVectorize)
+ EIGEN_DEBUG_VAR(MaySliceVectorize)
+ EIGEN_DEBUG_VAR(Traversal)
+ EIGEN_DEBUG_VAR(UnrollingLimit)
+ EIGEN_DEBUG_VAR(Unrolling)
+ std::cerr << std::endl;
+ }
+#endif
+};
+
+/***************************************************************************
+* Part 2 : unrollers
+***************************************************************************/
+
+/*** no vectorization ***/
+
+template<typename Func, typename Derived, int Start, int Length>
+struct redux_novec_unroller
+{
+ enum {
+ HalfLength = Length/2
+ };
+
+ typedef typename Derived::Scalar Scalar;
+
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
+ {
+ return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
+ redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func));
+ }
+};
+
+template<typename Func, typename Derived, int Start>
+struct redux_novec_unroller<Func, Derived, Start, 1>
+{
+ enum {
+ outer = Start / Derived::InnerSizeAtCompileTime,
+ inner = Start % Derived::InnerSizeAtCompileTime
+ };
+
+ typedef typename Derived::Scalar Scalar;
+
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&)
+ {
+ return mat.coeffByOuterInner(outer, inner);
+ }
+};
+
+// This is actually dead code and will never be called. It is required
+// to prevent false warnings regarding failed inlining though
+// for 0 length run() will never be called at all.
+template<typename Func, typename Derived, int Start>
+struct redux_novec_unroller<Func, Derived, Start, 0>
+{
+ typedef typename Derived::Scalar Scalar;
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); }
+};
+
+/*** vectorization ***/
+
+template<typename Func, typename Derived, int Start, int Length>
+struct redux_vec_unroller
+{
+ enum {
+ PacketSize = redux_traits<Func, Derived>::PacketSize,
+ HalfLength = Length/2
+ };
+
+ typedef typename Derived::Scalar Scalar;
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
+
+ static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func)
+ {
+ return func.packetOp(
+ redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func),
+ redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) );
+ }
+};
+
+template<typename Func, typename Derived, int Start>
+struct redux_vec_unroller<Func, Derived, Start, 1>
+{
+ enum {
+ index = Start * redux_traits<Func, Derived>::PacketSize,
+ outer = index / int(Derived::InnerSizeAtCompileTime),
+ inner = index % int(Derived::InnerSizeAtCompileTime),
+ alignment = Derived::Alignment
+ };
+
+ typedef typename Derived::Scalar Scalar;
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
+
+ static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&)
+ {
+ return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner);
+ }
+};
+
+/***************************************************************************
+* Part 3 : implementation of all cases
+***************************************************************************/
+
+template<typename Func, typename Derived,
+ int Traversal = redux_traits<Func, Derived>::Traversal,
+ int Unrolling = redux_traits<Func, Derived>::Unrolling
+>
+struct redux_impl;
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
+{
+ typedef typename Derived::Scalar Scalar;
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
+ {
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+ Scalar res;
+ res = mat.coeffByOuterInner(0, 0);
+ for(Index i = 1; i < mat.innerSize(); ++i)
+ res = func(res, mat.coeffByOuterInner(0, i));
+ for(Index i = 1; i < mat.outerSize(); ++i)
+ for(Index j = 0; j < mat.innerSize(); ++j)
+ res = func(res, mat.coeffByOuterInner(i, j));
+ return res;
+ }
+};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling>
+ : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime>
+{};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
+{
+ typedef typename Derived::Scalar Scalar;
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
+
+ static Scalar run(const Derived &mat, const Func& func)
+ {
+ const Index size = mat.size();
+
+ const Index packetSize = redux_traits<Func, Derived>::PacketSize;
+ const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
+ enum {
+ alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
+ alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment)
+ };
+ const Index alignedStart = internal::first_default_aligned(mat.nestedExpression());
+ const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
+ const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize);
+ const Index alignedEnd2 = alignedStart + alignedSize2;
+ const Index alignedEnd = alignedStart + alignedSize;
+ Scalar res;
+ if(alignedSize)
+ {
+ PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart);
+ if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop
+ {
+ PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize);
+ for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize)
+ {
+ packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index));
+ packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize));
+ }
+
+ packet_res0 = func.packetOp(packet_res0,packet_res1);
+ if(alignedEnd>alignedEnd2)
+ packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2));
+ }
+ res = func.predux(packet_res0);
+
+ for(Index index = 0; index < alignedStart; ++index)
+ res = func(res,mat.coeff(index));
+
+ for(Index index = alignedEnd; index < size; ++index)
+ res = func(res,mat.coeff(index));
+ }
+ else // too small to vectorize anything.
+ // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
+ {
+ res = mat.coeff(0);
+ for(Index index = 1; index < size; ++index)
+ res = func(res,mat.coeff(index));
+ }
+
+ return res;
+ }
+};
+
+// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
+template<typename Func, typename Derived, int Unrolling>
+struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
+{
+ typedef typename Derived::Scalar Scalar;
+ typedef typename redux_traits<Func, Derived>::PacketType PacketType;
+
+ EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
+ {
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+ const Index innerSize = mat.innerSize();
+ const Index outerSize = mat.outerSize();
+ enum {
+ packetSize = redux_traits<Func, Derived>::PacketSize
+ };
+ const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize;
+ Scalar res;
+ if(packetedInnerSize)
+ {
+ PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0);
+ for(Index j=0; j<outerSize; ++j)
+ for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize))
+ packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i));
+
+ res = func.predux(packet_res);
+ for(Index j=0; j<outerSize; ++j)
+ for(Index i=packetedInnerSize; i<innerSize; ++i)
+ res = func(res, mat.coeffByOuterInner(j,i));
+ }
+ else // too small to vectorize anything.
+ // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
+ {
+ res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func);
+ }
+
+ return res;
+ }
+};
+
+template<typename Func, typename Derived>
+struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
+{
+ typedef typename Derived::Scalar Scalar;
+
+ typedef typename redux_traits<Func, Derived>::PacketType PacketScalar;
+ enum {
+ PacketSize = redux_traits<Func, Derived>::PacketSize,
+ Size = Derived::SizeAtCompileTime,
+ VectorizedSize = (Size / PacketSize) * PacketSize
+ };
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
+ {
+ eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
+ if (VectorizedSize > 0) {
+ Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func));
+ if (VectorizedSize != Size)
+ res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func));
+ return res;
+ }
+ else {
+ return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func);
+ }
+ }
+};
+
+// evaluator adaptor
+template<typename _XprType>
+class redux_evaluator
+{
+public:
+ typedef _XprType XprType;
+ EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename XprType::PacketScalar PacketScalar;
+ typedef typename XprType::PacketReturnType PacketReturnType;
+
+ enum {
+ MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
+ // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
+ Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
+ IsRowMajor = XprType::IsRowMajor,
+ SizeAtCompileTime = XprType::SizeAtCompileTime,
+ InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
+ CoeffReadCost = evaluator<XprType>::CoeffReadCost,
+ Alignment = evaluator<XprType>::Alignment
+ };
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
+ EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
+ EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
+ EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeff(Index row, Index col) const
+ { return m_evaluator.coeff(row, col); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeff(Index index) const
+ { return m_evaluator.coeff(index); }
+
+ template<int LoadMode, typename PacketType>
+ PacketType packet(Index row, Index col) const
+ { return m_evaluator.template packet<LoadMode,PacketType>(row, col); }
+
+ template<int LoadMode, typename PacketType>
+ PacketType packet(Index index) const
+ { return m_evaluator.template packet<LoadMode,PacketType>(index); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+ template<int LoadMode, typename PacketType>
+ PacketType packetByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+ const XprType & nestedExpression() const { return m_xpr; }
+
+protected:
+ internal::evaluator<XprType> m_evaluator;
+ const XprType &m_xpr;
+};
+
+} // end namespace internal
+
+/***************************************************************************
+* Part 4 : public API
+***************************************************************************/
+
+
+/** \returns the result of a full redux operation on the whole matrix or vector using \a func
+ *
+ * The template parameter \a BinaryOp is the type of the functor \a func which must be
+ * an associative operator. Both current C++98 and C++11 functor styles are handled.
+ *
+ * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
+ */
+template<typename Derived>
+template<typename Func>
+typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::redux(const Func& func) const
+{
+ eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
+
+ typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
+ ThisEvaluator thisEval(derived());
+
+ return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
+}
+
+/** \returns the minimum of all coefficients of \c *this.
+ * \warning the result is undefined if \c *this contains NaN.
+ */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::minCoeff() const
+{
+ return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>());
+}
+
+/** \returns the maximum of all coefficients of \c *this.
+ * \warning the result is undefined if \c *this contains NaN.
+ */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::maxCoeff() const
+{
+ return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>());
+}
+
+/** \returns the sum of all coefficients of \c *this
+ *
+ * If \c *this is empty, then the value 0 is returned.
+ *
+ * \sa trace(), prod(), mean()
+ */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::sum() const
+{
+ if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
+ return Scalar(0);
+ return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>());
+}
+
+/** \returns the mean of all coefficients of *this
+*
+* \sa trace(), prod(), sum()
+*/
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::mean() const
+{
+#ifdef __INTEL_COMPILER
+ #pragma warning push
+ #pragma warning ( disable : 2259 )
+#endif
+ return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size());
+#ifdef __INTEL_COMPILER
+ #pragma warning pop
+#endif
+}
+
+/** \returns the product of all coefficients of *this
+ *
+ * Example: \include MatrixBase_prod.cpp
+ * Output: \verbinclude MatrixBase_prod.out
+ *
+ * \sa sum(), mean(), trace()
+ */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+DenseBase<Derived>::prod() const
+{
+ if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
+ return Scalar(1);
+ return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
+}
+
+/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
+ *
+ * \c *this can be any matrix, not necessarily square.
+ *
+ * \sa diagonal(), sum()
+ */
+template<typename Derived>
+EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
+MatrixBase<Derived>::trace() const
+{
+ return derived().diagonal().sum();
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_REDUX_H