summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h1431
1 files changed, 1431 insertions, 0 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h b/runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h
new file mode 100644
index 000000000..a648aa0fa
--- /dev/null
+++ b/runtimes/nn/depend/external/eigen/Eigen/src/Core/MathFunctions.h
@@ -0,0 +1,1431 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATHFUNCTIONS_H
+#define EIGEN_MATHFUNCTIONS_H
+
+// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
+// TODO this should better be moved to NumTraits
+#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
+
+
+namespace Eigen {
+
+// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
+// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
+#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
+long abs(long x) { return (labs(x)); }
+double abs(double x) { return (fabs(x)); }
+float abs(float x) { return (fabsf(x)); }
+long double abs(long double x) { return (fabsl(x)); }
+#endif
+
+namespace internal {
+
+/** \internal \class global_math_functions_filtering_base
+ *
+ * What it does:
+ * Defines a typedef 'type' as follows:
+ * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
+ * global_math_functions_filtering_base<T>::type is a typedef for it.
+ * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
+ *
+ * How it's used:
+ * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
+ * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
+ * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
+ * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
+ * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
+ *
+ * How it's implemented:
+ * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
+ * the typename dummy by an integer template parameter, it doesn't work anymore!
+ */
+
+template<typename T, typename dummy = void>
+struct global_math_functions_filtering_base
+{
+ typedef T type;
+};
+
+template<typename T> struct always_void { typedef void type; };
+
+template<typename T>
+struct global_math_functions_filtering_base
+ <T,
+ typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
+ >
+{
+ typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
+};
+
+#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
+#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
+
+/****************************************************************************
+* Implementation of real *
+****************************************************************************/
+
+template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+struct real_default_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return x;
+ }
+};
+
+template<typename Scalar>
+struct real_default_impl<Scalar,true>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ using std::real;
+ return real(x);
+ }
+};
+
+template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
+
+#ifdef __CUDA_ARCH__
+template<typename T>
+struct real_impl<std::complex<T> >
+{
+ typedef T RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline T run(const std::complex<T>& x)
+ {
+ return x.real();
+ }
+};
+#endif
+
+template<typename Scalar>
+struct real_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of imag *
+****************************************************************************/
+
+template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+struct imag_default_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar&)
+ {
+ return RealScalar(0);
+ }
+};
+
+template<typename Scalar>
+struct imag_default_impl<Scalar,true>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ using std::imag;
+ return imag(x);
+ }
+};
+
+template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
+
+#ifdef __CUDA_ARCH__
+template<typename T>
+struct imag_impl<std::complex<T> >
+{
+ typedef T RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline T run(const std::complex<T>& x)
+ {
+ return x.imag();
+ }
+};
+#endif
+
+template<typename Scalar>
+struct imag_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of real_ref *
+****************************************************************************/
+
+template<typename Scalar>
+struct real_ref_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar& run(Scalar& x)
+ {
+ return reinterpret_cast<RealScalar*>(&x)[0];
+ }
+ EIGEN_DEVICE_FUNC
+ static inline const RealScalar& run(const Scalar& x)
+ {
+ return reinterpret_cast<const RealScalar*>(&x)[0];
+ }
+};
+
+template<typename Scalar>
+struct real_ref_retval
+{
+ typedef typename NumTraits<Scalar>::Real & type;
+};
+
+/****************************************************************************
+* Implementation of imag_ref *
+****************************************************************************/
+
+template<typename Scalar, bool IsComplex>
+struct imag_ref_default_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar& run(Scalar& x)
+ {
+ return reinterpret_cast<RealScalar*>(&x)[1];
+ }
+ EIGEN_DEVICE_FUNC
+ static inline const RealScalar& run(const Scalar& x)
+ {
+ return reinterpret_cast<RealScalar*>(&x)[1];
+ }
+};
+
+template<typename Scalar>
+struct imag_ref_default_impl<Scalar, false>
+{
+ EIGEN_DEVICE_FUNC
+ static inline Scalar run(Scalar&)
+ {
+ return Scalar(0);
+ }
+ EIGEN_DEVICE_FUNC
+ static inline const Scalar run(const Scalar&)
+ {
+ return Scalar(0);
+ }
+};
+
+template<typename Scalar>
+struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
+
+template<typename Scalar>
+struct imag_ref_retval
+{
+ typedef typename NumTraits<Scalar>::Real & type;
+};
+
+/****************************************************************************
+* Implementation of conj *
+****************************************************************************/
+
+template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+struct conj_impl
+{
+ EIGEN_DEVICE_FUNC
+ static inline Scalar run(const Scalar& x)
+ {
+ return x;
+ }
+};
+
+template<typename Scalar>
+struct conj_impl<Scalar,true>
+{
+ EIGEN_DEVICE_FUNC
+ static inline Scalar run(const Scalar& x)
+ {
+ using std::conj;
+ return conj(x);
+ }
+};
+
+template<typename Scalar>
+struct conj_retval
+{
+ typedef Scalar type;
+};
+
+/****************************************************************************
+* Implementation of abs2 *
+****************************************************************************/
+
+template<typename Scalar,bool IsComplex>
+struct abs2_impl_default
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return x*x;
+ }
+};
+
+template<typename Scalar>
+struct abs2_impl_default<Scalar, true> // IsComplex
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return real(x)*real(x) + imag(x)*imag(x);
+ }
+};
+
+template<typename Scalar>
+struct abs2_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
+ }
+};
+
+template<typename Scalar>
+struct abs2_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of norm1 *
+****************************************************************************/
+
+template<typename Scalar, bool IsComplex>
+struct norm1_default_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(abs);
+ return abs(real(x)) + abs(imag(x));
+ }
+};
+
+template<typename Scalar>
+struct norm1_default_impl<Scalar, false>
+{
+ EIGEN_DEVICE_FUNC
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(abs);
+ return abs(x);
+ }
+};
+
+template<typename Scalar>
+struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
+
+template<typename Scalar>
+struct norm1_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of hypot *
+****************************************************************************/
+
+template<typename Scalar>
+struct hypot_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ static inline RealScalar run(const Scalar& x, const Scalar& y)
+ {
+ EIGEN_USING_STD_MATH(abs);
+ EIGEN_USING_STD_MATH(sqrt);
+ RealScalar _x = abs(x);
+ RealScalar _y = abs(y);
+ Scalar p, qp;
+ if(_x>_y)
+ {
+ p = _x;
+ qp = _y / p;
+ }
+ else
+ {
+ p = _y;
+ qp = _x / p;
+ }
+ if(p==RealScalar(0)) return RealScalar(0);
+ return p * sqrt(RealScalar(1) + qp*qp);
+ }
+};
+
+template<typename Scalar>
+struct hypot_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of cast *
+****************************************************************************/
+
+template<typename OldType, typename NewType>
+struct cast_impl
+{
+ EIGEN_DEVICE_FUNC
+ static inline NewType run(const OldType& x)
+ {
+ return static_cast<NewType>(x);
+ }
+};
+
+// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
+
+template<typename OldType, typename NewType>
+EIGEN_DEVICE_FUNC
+inline NewType cast(const OldType& x)
+{
+ return cast_impl<OldType, NewType>::run(x);
+}
+
+/****************************************************************************
+* Implementation of round *
+****************************************************************************/
+
+#if EIGEN_HAS_CXX11_MATH
+ template<typename Scalar>
+ struct round_impl {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
+ using std::round;
+ return round(x);
+ }
+ };
+#else
+ template<typename Scalar>
+ struct round_impl
+ {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
+ EIGEN_USING_STD_MATH(floor);
+ EIGEN_USING_STD_MATH(ceil);
+ return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
+ }
+ };
+#endif
+
+template<typename Scalar>
+struct round_retval
+{
+ typedef Scalar type;
+};
+
+/****************************************************************************
+* Implementation of arg *
+****************************************************************************/
+
+#if EIGEN_HAS_CXX11_MATH
+ template<typename Scalar>
+ struct arg_impl {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(arg);
+ return arg(x);
+ }
+ };
+#else
+ template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+ struct arg_default_impl
+ {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
+ };
+
+ template<typename Scalar>
+ struct arg_default_impl<Scalar,true>
+ {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD_MATH(arg);
+ return arg(x);
+ }
+ };
+
+ template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
+#endif
+
+template<typename Scalar>
+struct arg_retval
+{
+ typedef typename NumTraits<Scalar>::Real type;
+};
+
+/****************************************************************************
+* Implementation of log1p *
+****************************************************************************/
+
+namespace std_fallback {
+ // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
+ // or that there is no suitable std::log1p function available
+ template<typename Scalar>
+ EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_USING_STD_MATH(log);
+ Scalar x1p = RealScalar(1) + x;
+ return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
+ }
+}
+
+template<typename Scalar>
+struct log1p_impl {
+ static inline Scalar run(const Scalar& x)
+ {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
+ #if EIGEN_HAS_CXX11_MATH
+ using std::log1p;
+ #endif
+ using std_fallback::log1p;
+ return log1p(x);
+ }
+};
+
+
+template<typename Scalar>
+struct log1p_retval
+{
+ typedef Scalar type;
+};
+
+/****************************************************************************
+* Implementation of pow *
+****************************************************************************/
+
+template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
+struct pow_impl
+{
+ //typedef Scalar retval;
+ typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
+ static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
+ {
+ EIGEN_USING_STD_MATH(pow);
+ return pow(x, y);
+ }
+};
+
+template<typename ScalarX,typename ScalarY>
+struct pow_impl<ScalarX,ScalarY, true>
+{
+ typedef ScalarX result_type;
+ static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
+ {
+ ScalarX res(1);
+ eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
+ if(y & 1) res *= x;
+ y >>= 1;
+ while(y)
+ {
+ x *= x;
+ if(y&1) res *= x;
+ y >>= 1;
+ }
+ return res;
+ }
+};
+
+/****************************************************************************
+* Implementation of random *
+****************************************************************************/
+
+template<typename Scalar,
+ bool IsComplex,
+ bool IsInteger>
+struct random_default_impl {};
+
+template<typename Scalar>
+struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
+
+template<typename Scalar>
+struct random_retval
+{
+ typedef Scalar type;
+};
+
+template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
+template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
+
+template<typename Scalar>
+struct random_default_impl<Scalar, false, false>
+{
+ static inline Scalar run(const Scalar& x, const Scalar& y)
+ {
+ return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
+ }
+ static inline Scalar run()
+ {
+ return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
+ }
+};
+
+enum {
+ meta_floor_log2_terminate,
+ meta_floor_log2_move_up,
+ meta_floor_log2_move_down,
+ meta_floor_log2_bogus
+};
+
+template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
+{
+ enum { middle = (lower + upper) / 2,
+ value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
+ : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
+ : (n==0) ? int(meta_floor_log2_bogus)
+ : int(meta_floor_log2_move_up)
+ };
+};
+
+template<unsigned int n,
+ int lower = 0,
+ int upper = sizeof(unsigned int) * CHAR_BIT - 1,
+ int selector = meta_floor_log2_selector<n, lower, upper>::value>
+struct meta_floor_log2 {};
+
+template<unsigned int n, int lower, int upper>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
+{
+ enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
+};
+
+template<unsigned int n, int lower, int upper>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
+{
+ enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
+};
+
+template<unsigned int n, int lower, int upper>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
+{
+ enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
+};
+
+template<unsigned int n, int lower, int upper>
+struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
+{
+ // no value, error at compile time
+};
+
+template<typename Scalar>
+struct random_default_impl<Scalar, false, true>
+{
+ static inline Scalar run(const Scalar& x, const Scalar& y)
+ {
+ typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
+ if(y<x)
+ return x;
+ // the following difference might overflow on a 32 bits system,
+ // but since y>=x the result converted to an unsigned long is still correct.
+ std::size_t range = ScalarX(y)-ScalarX(x);
+ std::size_t offset = 0;
+ // rejection sampling
+ std::size_t divisor = 1;
+ std::size_t multiplier = 1;
+ if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1);
+ else multiplier = 1 + range/(std::size_t(RAND_MAX)+1);
+ do {
+ offset = (std::size_t(std::rand()) * multiplier) / divisor;
+ } while (offset > range);
+ return Scalar(ScalarX(x) + offset);
+ }
+
+ static inline Scalar run()
+ {
+#ifdef EIGEN_MAKING_DOCS
+ return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
+#else
+ enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
+ scalar_bits = sizeof(Scalar) * CHAR_BIT,
+ shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
+ offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
+ };
+ return Scalar((std::rand() >> shift) - offset);
+#endif
+ }
+};
+
+template<typename Scalar>
+struct random_default_impl<Scalar, true, false>
+{
+ static inline Scalar run(const Scalar& x, const Scalar& y)
+ {
+ return Scalar(random(real(x), real(y)),
+ random(imag(x), imag(y)));
+ }
+ static inline Scalar run()
+ {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ return Scalar(random<RealScalar>(), random<RealScalar>());
+ }
+};
+
+template<typename Scalar>
+inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
+{
+ return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
+}
+
+template<typename Scalar>
+inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
+{
+ return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
+}
+
+// Implementatin of is* functions
+
+// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
+#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
+#define EIGEN_USE_STD_FPCLASSIFY 1
+#else
+#define EIGEN_USE_STD_FPCLASSIFY 0
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isnan_impl(const T&) { return false; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isinf_impl(const T&) { return false; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<internal::is_integral<T>::value,bool>::type
+isfinite_impl(const T&) { return true; }
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isfinite_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isfinite)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isfinite;
+ return isfinite EIGEN_NOT_A_MACRO (x);
+ #else
+ return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
+ #endif
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isinf_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isinf)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isinf;
+ return isinf EIGEN_NOT_A_MACRO (x);
+ #else
+ return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
+ #endif
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
+isnan_impl(const T& x)
+{
+ #ifdef __CUDA_ARCH__
+ return (::isnan)(x);
+ #elif EIGEN_USE_STD_FPCLASSIFY
+ using std::isnan;
+ return isnan EIGEN_NOT_A_MACRO (x);
+ #else
+ return x != x;
+ #endif
+}
+
+#if (!EIGEN_USE_STD_FPCLASSIFY)
+
+#if EIGEN_COMP_MSVC
+
+template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
+{
+ return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
+}
+
+//MSVC defines a _isnan builtin function, but for double only
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
+EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
+
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
+EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
+
+#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
+
+#if EIGEN_GNUC_AT_LEAST(5,0)
+ #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
+#else
+ // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
+ // while the second prevent too aggressive optimizations in fast-math mode:
+ #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
+#endif
+
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
+template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
+
+#undef EIGEN_TMP_NOOPT_ATTRIB
+
+#endif
+
+#endif
+
+// The following overload are defined at the end of this file
+template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
+template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
+template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
+
+template<typename T> T generic_fast_tanh_float(const T& a_x);
+
+} // end namespace internal
+
+/****************************************************************************
+* Generic math functions *
+****************************************************************************/
+
+namespace numext {
+
+#ifndef __CUDA_ARCH__
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(min);
+ return min EIGEN_NOT_A_MACRO (x,y);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(max);
+ return max EIGEN_NOT_A_MACRO (x,y);
+}
+#else
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
+{
+ return y < x ? y : x;
+}
+template<>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
+{
+ return fminf(x, y);
+}
+template<typename T>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
+{
+ return x < y ? y : x;
+}
+template<>
+EIGEN_DEVICE_FUNC
+EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
+{
+ return fmaxf(x, y);
+}
+#endif
+
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
+{
+ return internal::real_ref_impl<Scalar>::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
+{
+ return internal::imag_ref_impl<Scalar>::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
+{
+ return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
+}
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float log1p(const float &x) { return ::log1pf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double log1p(const double &x) { return ::log1p(x); }
+#endif
+
+template<typename ScalarX,typename ScalarY>
+EIGEN_DEVICE_FUNC
+inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
+{
+ return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
+}
+
+template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
+template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
+template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
+
+template<typename Scalar>
+EIGEN_DEVICE_FUNC
+inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
+{
+ return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+T (floor)(const T& x)
+{
+ EIGEN_USING_STD_MATH(floor);
+ return floor(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float floor(const float &x) { return ::floorf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double floor(const double &x) { return ::floor(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+T (ceil)(const T& x)
+{
+ EIGEN_USING_STD_MATH(ceil);
+ return ceil(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float ceil(const float &x) { return ::ceilf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double ceil(const double &x) { return ::ceil(x); }
+#endif
+
+
+/** Log base 2 for 32 bits positive integers.
+ * Conveniently returns 0 for x==0. */
+inline int log2(int x)
+{
+ eigen_assert(x>=0);
+ unsigned int v(x);
+ static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return table[(v * 0x07C4ACDDU) >> 27];
+}
+
+/** \returns the square root of \a x.
+ *
+ * It is essentially equivalent to \code using std::sqrt; return sqrt(x); \endcode,
+ * but slightly faster for float/double and some compilers (e.g., gcc), thanks to
+ * specializations when SSE is enabled.
+ *
+ * It's usage is justified in performance critical functions, like norm/normalize.
+ */
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sqrt(const T &x)
+{
+ EIGEN_USING_STD_MATH(sqrt);
+ return sqrt(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T log(const T &x) {
+ EIGEN_USING_STD_MATH(log);
+ return log(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float log(const float &x) { return ::logf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double log(const double &x) { return ::log(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
+abs(const T &x) {
+ EIGEN_USING_STD_MATH(abs);
+ return abs(x);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
+abs(const T &x) {
+ return x;
+}
+
+#if defined(__SYCL_DEVICE_ONLY__)
+EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
+EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
+#endif // defined(__SYCL_DEVICE_ONLY__)
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float abs(const float &x) { return ::fabsf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double abs(const double &x) { return ::fabs(x); }
+
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float abs(const std::complex<float>& x) {
+ return ::hypotf(x.real(), x.imag());
+}
+
+template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double abs(const std::complex<double>& x) {
+ return ::hypot(x.real(), x.imag());
+}
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T exp(const T &x) {
+ EIGEN_USING_STD_MATH(exp);
+ return exp(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float exp(const float &x) { return ::expf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double exp(const double &x) { return ::exp(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T cos(const T &x) {
+ EIGEN_USING_STD_MATH(cos);
+ return cos(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float cos(const float &x) { return ::cosf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double cos(const double &x) { return ::cos(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sin(const T &x) {
+ EIGEN_USING_STD_MATH(sin);
+ return sin(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float sin(const float &x) { return ::sinf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double sin(const double &x) { return ::sin(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T tan(const T &x) {
+ EIGEN_USING_STD_MATH(tan);
+ return tan(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tan(const float &x) { return ::tanf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double tan(const double &x) { return ::tan(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T acos(const T &x) {
+ EIGEN_USING_STD_MATH(acos);
+ return acos(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float acos(const float &x) { return ::acosf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double acos(const double &x) { return ::acos(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T asin(const T &x) {
+ EIGEN_USING_STD_MATH(asin);
+ return asin(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float asin(const float &x) { return ::asinf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double asin(const double &x) { return ::asin(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T atan(const T &x) {
+ EIGEN_USING_STD_MATH(atan);
+ return atan(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float atan(const float &x) { return ::atanf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double atan(const double &x) { return ::atan(x); }
+#endif
+
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T cosh(const T &x) {
+ EIGEN_USING_STD_MATH(cosh);
+ return cosh(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float cosh(const float &x) { return ::coshf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double cosh(const double &x) { return ::cosh(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T sinh(const T &x) {
+ EIGEN_USING_STD_MATH(sinh);
+ return sinh(x);
+}
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float sinh(const float &x) { return ::sinhf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double sinh(const double &x) { return ::sinh(x); }
+#endif
+
+template<typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T tanh(const T &x) {
+ EIGEN_USING_STD_MATH(tanh);
+ return tanh(x);
+}
+
+#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tanh(float x) { return internal::generic_fast_tanh_float(x); }
+#endif
+
+#ifdef __CUDACC__
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float tanh(const float &x) { return ::tanhf(x); }
+
+template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double tanh(const double &x) { return ::tanh(x); }
+#endif
+
+template <typename T>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+T fmod(const T& a, const T& b) {
+ EIGEN_USING_STD_MATH(fmod);
+ return fmod(a, b);
+}
+
+#ifdef __CUDACC__
+template <>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+float fmod(const float& a, const float& b) {
+ return ::fmodf(a, b);
+}
+
+template <>
+EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
+double fmod(const double& a, const double& b) {
+ return ::fmod(a, b);
+}
+#endif
+
+} // end namespace numext
+
+namespace internal {
+
+template<typename T>
+EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
+{
+ return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
+{
+ return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
+{
+ return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
+}
+
+/****************************************************************************
+* Implementation of fuzzy comparisons *
+****************************************************************************/
+
+template<typename Scalar,
+ bool IsComplex,
+ bool IsInteger>
+struct scalar_fuzzy_default_impl {};
+
+template<typename Scalar>
+struct scalar_fuzzy_default_impl<Scalar, false, false>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
+ static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
+ {
+ return numext::abs(x) <= numext::abs(y) * prec;
+ }
+ EIGEN_DEVICE_FUNC
+ static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
+ {
+ return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
+ }
+ EIGEN_DEVICE_FUNC
+ static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
+ {
+ return x <= y || isApprox(x, y, prec);
+ }
+};
+
+template<typename Scalar>
+struct scalar_fuzzy_default_impl<Scalar, false, true>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
+ static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
+ {
+ return x == Scalar(0);
+ }
+ EIGEN_DEVICE_FUNC
+ static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
+ {
+ return x == y;
+ }
+ EIGEN_DEVICE_FUNC
+ static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
+ {
+ return x <= y;
+ }
+};
+
+template<typename Scalar>
+struct scalar_fuzzy_default_impl<Scalar, true, false>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
+ static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
+ {
+ return numext::abs2(x) <= numext::abs2(y) * prec * prec;
+ }
+ EIGEN_DEVICE_FUNC
+ static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
+ {
+ return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
+ }
+};
+
+template<typename Scalar>
+struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
+
+template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
+inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
+{
+ return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
+}
+
+template<typename Scalar> EIGEN_DEVICE_FUNC
+inline bool isApprox(const Scalar& x, const Scalar& y,
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
+{
+ return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
+}
+
+template<typename Scalar> EIGEN_DEVICE_FUNC
+inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
+ const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
+{
+ return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
+}
+
+/******************************************
+*** The special case of the bool type ***
+******************************************/
+
+template<> struct random_impl<bool>
+{
+ static inline bool run()
+ {
+ return random<int>(0,1)==0 ? false : true;
+ }
+};
+
+template<> struct scalar_fuzzy_impl<bool>
+{
+ typedef bool RealScalar;
+
+ template<typename OtherScalar> EIGEN_DEVICE_FUNC
+ static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
+ {
+ return !x;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline bool isApprox(bool x, bool y, bool)
+ {
+ return x == y;
+ }
+
+ EIGEN_DEVICE_FUNC
+ static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
+ {
+ return (!x) || y;
+ }
+
+};
+
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATHFUNCTIONS_H