summaryrefslogtreecommitdiff
path: root/runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h
diff options
context:
space:
mode:
Diffstat (limited to 'runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h')
-rw-r--r--runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h639
1 files changed, 0 insertions, 639 deletions
diff --git a/runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h b/runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h
deleted file mode 100644
index 571972023..000000000
--- a/runtimes/nn/depend/external/eigen/Eigen/src/CholmodSupport/CholmodSupport.h
+++ /dev/null
@@ -1,639 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_CHOLMODSUPPORT_H
-#define EIGEN_CHOLMODSUPPORT_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename Scalar> struct cholmod_configure_matrix;
-
-template<> struct cholmod_configure_matrix<double> {
- template<typename CholmodType>
- static void run(CholmodType& mat) {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_DOUBLE;
- }
-};
-
-template<> struct cholmod_configure_matrix<std::complex<double> > {
- template<typename CholmodType>
- static void run(CholmodType& mat) {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_DOUBLE;
- }
-};
-
-// Other scalar types are not yet suppotred by Cholmod
-// template<> struct cholmod_configure_matrix<float> {
-// template<typename CholmodType>
-// static void run(CholmodType& mat) {
-// mat.xtype = CHOLMOD_REAL;
-// mat.dtype = CHOLMOD_SINGLE;
-// }
-// };
-//
-// template<> struct cholmod_configure_matrix<std::complex<float> > {
-// template<typename CholmodType>
-// static void run(CholmodType& mat) {
-// mat.xtype = CHOLMOD_COMPLEX;
-// mat.dtype = CHOLMOD_SINGLE;
-// }
-// };
-
-} // namespace internal
-
-/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
- * Note that the data are shared.
- */
-template<typename _Scalar, int _Options, typename _StorageIndex>
-cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
-{
- cholmod_sparse res;
- res.nzmax = mat.nonZeros();
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- res.p = mat.outerIndexPtr();
- res.i = mat.innerIndexPtr();
- res.x = mat.valuePtr();
- res.z = 0;
- res.sorted = 1;
- if(mat.isCompressed())
- {
- res.packed = 1;
- res.nz = 0;
- }
- else
- {
- res.packed = 0;
- res.nz = mat.innerNonZeroPtr();
- }
-
- res.dtype = 0;
- res.stype = -1;
-
- if (internal::is_same<_StorageIndex,int>::value)
- {
- res.itype = CHOLMOD_INT;
- }
- else if (internal::is_same<_StorageIndex,long>::value)
- {
- res.itype = CHOLMOD_LONG;
- }
- else
- {
- eigen_assert(false && "Index type not supported yet");
- }
-
- // setup res.xtype
- internal::cholmod_configure_matrix<_Scalar>::run(res);
-
- res.stype = 0;
-
- return res;
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
- return res;
-}
-
-template<typename _Scalar, int _Options, typename _Index>
-const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
-{
- cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
- return res;
-}
-
-/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
- * The data are not copied but shared. */
-template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
-cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
-{
- cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
-
- if(UpLo==Upper) res.stype = 1;
- if(UpLo==Lower) res.stype = -1;
-
- return res;
-}
-
-/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
- * The data are not copied but shared. */
-template<typename Derived>
-cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- typedef typename Derived::Scalar Scalar;
-
- cholmod_dense res;
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- res.nzmax = res.nrow * res.ncol;
- res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
- res.x = (void*)(mat.derived().data());
- res.z = 0;
-
- internal::cholmod_configure_matrix<Scalar>::run(res);
-
- return res;
-}
-
-/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
- * The data are not copied but shared. */
-template<typename Scalar, int Flags, typename StorageIndex>
-MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
-{
- return MappedSparseMatrix<Scalar,Flags,StorageIndex>
- (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
- static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
-}
-
-enum CholmodMode {
- CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodBase
- * \brief The base class for the direct Cholesky factorization of Cholmod
- * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
- */
-template<typename _MatrixType, int _UpLo, typename Derived>
-class CholmodBase : public SparseSolverBase<Derived>
-{
- protected:
- typedef SparseSolverBase<Derived> Base;
- using Base::derived;
- using Base::m_isInitialized;
- public:
- typedef _MatrixType MatrixType;
- enum { UpLo = _UpLo };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef MatrixType CholMatrixType;
- typedef typename MatrixType::StorageIndex StorageIndex;
- enum {
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
-
- public:
-
- CholmodBase()
- : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
- m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
- cholmod_start(&m_cholmod);
- }
-
- explicit CholmodBase(const MatrixType& matrix)
- : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
- m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
- cholmod_start(&m_cholmod);
- compute(matrix);
- }
-
- ~CholmodBase()
- {
- if(m_cholmodFactor)
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- cholmod_finish(&m_cholmod);
- }
-
- inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
- inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was succesful,
- * \c NumericalIssue if the matrix.appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
-
- /** Computes the sparse Cholesky decomposition of \a matrix */
- Derived& compute(const MatrixType& matrix)
- {
- analyzePattern(matrix);
- factorize(matrix);
- return derived();
- }
-
- /** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
- *
- * This function is particularly useful when solving for several problems having the same structure.
- *
- * \sa factorize()
- */
- void analyzePattern(const MatrixType& matrix)
- {
- if(m_cholmodFactor)
- {
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- m_cholmodFactor = 0;
- }
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
-
- this->m_isInitialized = true;
- this->m_info = Success;
- m_analysisIsOk = true;
- m_factorizationIsOk = false;
- }
-
- /** Performs a numeric decomposition of \a matrix
- *
- * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
- *
- * \sa analyzePattern()
- */
- void factorize(const MatrixType& matrix)
- {
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
- cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
-
- // If the factorization failed, minor is the column at which it did. On success minor == n.
- this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
- m_factorizationIsOk = true;
- }
-
- /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
- * See the Cholmod user guide for details. */
- cholmod_common& cholmod() { return m_cholmod; }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- /** \internal */
- template<typename Rhs,typename Dest>
- void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref.
- Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
-
- cholmod_dense b_cd = viewAsCholmod(b_ref);
- cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
- if(!x_cd)
- {
- this->m_info = NumericalIssue;
- return;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
- cholmod_free_dense(&x_cd, &m_cholmod);
- }
-
- /** \internal */
- template<typename RhsDerived, typename DestDerived>
- void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
- {
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
- const Index size = m_cholmodFactor->n;
- EIGEN_UNUSED_VARIABLE(size);
- eigen_assert(size==b.rows());
-
- // note: cs stands for Cholmod Sparse
- Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
- cholmod_sparse b_cs = viewAsCholmod(b_ref);
- cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
- if(!x_cs)
- {
- this->m_info = NumericalIssue;
- return;
- }
- // TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
- dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
- cholmod_free_sparse(&x_cs, &m_cholmod);
- }
- #endif // EIGEN_PARSED_BY_DOXYGEN
-
-
- /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
- *
- * During the numerical factorization, an offset term is added to the diagonal coefficients:\n
- * \c d_ii = \a offset + \c d_ii
- *
- * The default is \a offset=0.
- *
- * \returns a reference to \c *this.
- */
- Derived& setShift(const RealScalar& offset)
- {
- m_shiftOffset[0] = double(offset);
- return derived();
- }
-
- /** \returns the determinant of the underlying matrix from the current factorization */
- Scalar determinant() const
- {
- using std::exp;
- return exp(logDeterminant());
- }
-
- /** \returns the log determinant of the underlying matrix from the current factorization */
- Scalar logDeterminant() const
- {
- using std::log;
- using numext::real;
- eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
-
- RealScalar logDet = 0;
- Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
- if (m_cholmodFactor->is_super)
- {
- // Supernodal factorization stored as a packed list of dense column-major blocs,
- // as described by the following structure:
-
- // super[k] == index of the first column of the j-th super node
- StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
- // pi[k] == offset to the description of row indices
- StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
- // px[k] == offset to the respective dense block
- StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
-
- Index nb_super_nodes = m_cholmodFactor->nsuper;
- for (Index k=0; k < nb_super_nodes; ++k)
- {
- StorageIndex ncols = super[k + 1] - super[k];
- StorageIndex nrows = pi[k + 1] - pi[k];
-
- Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
- logDet += sk.real().log().sum();
- }
- }
- else
- {
- // Simplicial factorization stored as standard CSC matrix.
- StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
- Index size = m_cholmodFactor->n;
- for (Index k=0; k<size; ++k)
- logDet += log(real( x[p[k]] ));
- }
- if (m_cholmodFactor->is_ll)
- logDet *= 2.0;
- return logDet;
- };
-
- template<typename Stream>
- void dumpMemory(Stream& /*s*/)
- {}
-
- protected:
- mutable cholmod_common m_cholmod;
- cholmod_factor* m_cholmodFactor;
- double m_shiftOffset[2];
- mutable ComputationInfo m_info;
- int m_factorizationIsOk;
- int m_analysisIsOk;
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLLT
- * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * \implsparsesolverconcept
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \warning Only double precision real and complex scalar types are supported by Cholmod.
- *
- * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLLT() : Base() { init(); }
-
- CholmodSimplicialLLT(const MatrixType& matrix) : Base()
- {
- init();
- this->compute(matrix);
- }
-
- ~CholmodSimplicialLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- }
-};
-
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSimplicialLDLT
- * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
- * using the Cholmod library.
- * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * \implsparsesolverconcept
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \warning Only double precision real and complex scalar types are supported by Cholmod.
- *
- * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSimplicialLDLT() : Base() { init(); }
-
- CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
- {
- init();
- this->compute(matrix);
- }
-
- ~CholmodSimplicialLDLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodSupernodalLLT
- * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
- * using the Cholmod library.
- * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
- * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * \implsparsesolverconcept
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \warning Only double precision real and complex scalar types are supported by Cholmod.
- *
- * \sa \ref TutorialSparseSolverConcept
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodSupernodalLLT() : Base() { init(); }
-
- CholmodSupernodalLLT(const MatrixType& matrix) : Base()
- {
- init();
- this->compute(matrix);
- }
-
- ~CholmodSupernodalLLT() {}
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- }
-};
-
-/** \ingroup CholmodSupport_Module
- * \class CholmodDecomposition
- * \brief A general Cholesky factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
- * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * This variant permits to change the underlying Cholesky method at runtime.
- * On the other hand, it does not provide access to the result of the factorization.
- * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * \implsparsesolverconcept
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
- *
- * \warning Only double precision real and complex scalar types are supported by Cholmod.
- *
- * \sa \ref TutorialSparseSolverConcept
- */
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
-{
- typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
- using Base::m_cholmod;
-
- public:
-
- typedef _MatrixType MatrixType;
-
- CholmodDecomposition() : Base() { init(); }
-
- CholmodDecomposition(const MatrixType& matrix) : Base()
- {
- init();
- this->compute(matrix);
- }
-
- ~CholmodDecomposition() {}
-
- void setMode(CholmodMode mode)
- {
- switch(mode)
- {
- case CholmodAuto:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- break;
- case CholmodSimplicialLLt:
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- break;
- case CholmodSupernodalLLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- break;
- case CholmodLDLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- break;
- default:
- break;
- }
- }
- protected:
- void init()
- {
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- }
-};
-
-} // end namespace Eigen
-
-#endif // EIGEN_CHOLMODSUPPORT_H