summaryrefslogtreecommitdiff
path: root/libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp')
-rw-r--r--libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp322
1 files changed, 322 insertions, 0 deletions
diff --git a/libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp b/libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp
new file mode 100644
index 000000000..a3e0163de
--- /dev/null
+++ b/libs/ARMComputeEx/src/core/CL/kernels/CLPixelWiseDivisionKernel.cpp
@@ -0,0 +1,322 @@
+/*
+ * Copyright (c) 2018 Samsung Electronics Co., Ltd. All Rights Reserved
+ * Copyright (c) 2016-2018 ARM Limited.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "arm_compute/core/CL/kernels/CLPixelWiseDivisionKernel.h"
+
+#include "arm_compute/core/CL/CLHelpers.h"
+#include "arm_compute/core/CL/CLKernelLibrary.h"
+#include "arm_compute/core/CL/CLKernelLibraryEx.h"
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/CL/OpenCL.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include <cmath>
+#include <cstdlib>
+#include <set>
+#include <string>
+
+using namespace arm_compute;
+
+namespace
+{
+constexpr unsigned int num_elems_processed_per_iteration = 16;
+
+Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2,
+ const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
+ RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_UNUSED(overflow_policy);
+ ARM_COMPUTE_UNUSED(rounding_policy);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QS8,
+ DataType::QS16, DataType::S16, DataType::F16,
+ DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QS8,
+ DataType::QS16, DataType::S16, DataType::F16,
+ DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative.");
+
+ const TensorShape &out_shape =
+ TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0,
+ "Inputs are not broadcast compatible");
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input1, input2);
+
+ if (is_data_type_fixed_point(input1->data_type()))
+ {
+ // All data types must be all QS8 or all QS16
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale != 1,
+ "Unsupported scaling factor for QS8/QS16. Scale must be 1.");
+ }
+
+ // Validate in case of configured output
+ if (output->total_size() > 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QS8,
+ DataType::QS16, DataType::S16,
+ DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ output->data_type() == DataType::U8 &&
+ (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
+ "Output can only be U8 if both inputs are U8");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ detail::have_different_dimensions(out_shape, output->tensor_shape(), 0),
+ "Wrong shape for output");
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input1, output);
+ if (is_data_type_fixed_point(input1->data_type()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
+ }
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2,
+ ITensorInfo *output)
+{
+ const std::pair<TensorShape, ValidRegion> broadcast_pair =
+ ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
+ const TensorShape &out_shape = broadcast_pair.first;
+ const ValidRegion &valid_region = broadcast_pair.second;
+
+ // Auto initialize output if not initialized
+ {
+ set_shape_if_empty(*output, out_shape);
+
+ if (input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
+ {
+ set_format_if_unknown(*output, Format::S16);
+ }
+ else if (input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
+ {
+ set_format_if_unknown(*output, Format::F32);
+ }
+ }
+
+ Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
+ Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
+ Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
+
+ AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
+ AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
+ AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
+
+ bool window_changed = update_window_and_padding(win_input1, input1_access) ||
+ update_window_and_padding(win_input2, input2_access) ||
+ update_window_and_padding(win, output_access);
+
+ output_access.set_valid_region(win, valid_region);
+
+ Status err = (window_changed)
+ ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!")
+ : Status{};
+ return std::make_pair(err, win);
+}
+} // namespace
+
+CLPixelWiseDivisionKernel::CLPixelWiseDivisionKernel()
+ : _input1(nullptr), _input2(nullptr), _output(nullptr)
+{
+}
+
+void CLPixelWiseDivisionKernel::configure(const ICLTensor *input1, const ICLTensor *input2,
+ ICLTensor *output, float scale,
+ ConvertPolicy overflow_policy,
+ RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(),
+ scale, overflow_policy, rounding_policy));
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+
+ _input1 = input1;
+ _input2 = input2;
+ _output = output;
+
+ int scale_int = -1;
+ // Extract sign, exponent and mantissa
+ int exponent = 0;
+ float normalized_mantissa = std::frexp(scale, &exponent);
+ // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
+ // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <=
+ // 14
+ // Moreover, it will be negative as we deal with 1/2^n
+ if ((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
+ {
+ // Store the positive exponent. We know that we compute 1/2^n
+ // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
+ scale_int = std::abs(exponent - 1);
+ }
+
+ std::string data_type;
+ std::string compute_type;
+ // Check if it has float inputs and output
+ if (is_data_type_float(input1->info()->data_type()) ||
+ is_data_type_float(input2->info()->data_type()))
+ {
+ scale_int = -1;
+ compute_type = (input1->info()->data_type() == DataType::F32 ||
+ input2->info()->data_type() == DataType::F32)
+ ? "float"
+ : "half";
+ data_type = "DATA_TYPE_FLOAT";
+ }
+ else
+ {
+ if (input1->info()->data_type() == DataType::S16 ||
+ input2->info()->data_type() == DataType::S16)
+ {
+ compute_type = "int";
+ }
+ else if (input1->info()->data_type() == DataType::QS8)
+ {
+ compute_type = "qs8";
+ }
+ else if (input1->info()->data_type() == DataType::QS16)
+ {
+ compute_type = "qs16";
+ }
+ else
+ {
+ compute_type = "ushort";
+ }
+ data_type = "DATA_TYPE_INT";
+ }
+
+ // Construct kernel name
+ std::string kernel_name = "pixelwise_div";
+ kernel_name += (scale_int >= 0) ? "_int" : "_float";
+
+ // Set kernel build options
+ std::set<std::string> build_opts;
+ build_opts.emplace(
+ (overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->info()->data_type()))
+ ? "-DWRAP"
+ : "-DSATURATE");
+ build_opts.emplace((rounding_policy == RoundingPolicy::TO_ZERO) ? "-DROUND=_rtz"
+ : "-DROUND=_rte");
+ if (is_data_type_fixed_point(input1->info()->data_type()))
+ {
+ build_opts.emplace("-DFIXED_POINT_POSITION=" +
+ support::cpp11::to_string(input1->info()->fixed_point_position()));
+ }
+ build_opts.emplace("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->info()->data_type()));
+ build_opts.emplace("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->info()->data_type()));
+ build_opts.emplace("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->info()->data_type()));
+ build_opts.emplace("-DDATA_TYPE_RES=" + compute_type);
+ build_opts.emplace("-D" + data_type);
+
+ // Create kernel
+ _kernel =
+ static_cast<cl::Kernel>(CLKernelLibraryEx::get().create_kernel(kernel_name, build_opts));
+
+ // Set scale argument
+ unsigned int idx = 3 * num_arguments_per_3D_tensor(); // Skip the inputs and output parameters
+
+ if (scale_int >= 0)
+ {
+ _kernel.setArg(idx++, scale_int);
+ }
+ else
+ {
+ _kernel.setArg(idx++, scale);
+ }
+
+ ICLKernel::configure(win_config.second);
+}
+
+Status CLPixelWiseDivisionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2,
+ const ITensorInfo *output, float scale,
+ ConvertPolicy overflow_policy,
+ RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(),
+ input2->clone().get(),
+ output->clone().get())
+ .first);
+
+ return Status{};
+}
+
+void CLPixelWiseDivisionKernel::run(const Window &window, cl::CommandQueue &queue)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
+
+ const TensorShape &in_shape1 = _input1->info()->tensor_shape();
+ const TensorShape &in_shape2 = _input2->info()->tensor_shape();
+ const TensorShape &out_shape = _output->info()->tensor_shape();
+
+ bool can_collapse = true;
+ if (std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
+ {
+ can_collapse =
+ (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
+ for (size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
+ {
+ can_collapse = (in_shape1[d] == in_shape2[d]);
+ }
+ }
+
+ bool has_collapsed = false;
+ Window collapsed =
+ can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed)
+ : window;
+
+ const TensorShape &in_shape1_collapsed =
+ has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
+ const TensorShape &in_shape2_collapsed =
+ has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
+
+ Window slice = collapsed.first_slice_window_3D();
+ Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
+ Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
+
+ do
+ {
+ unsigned int idx = 0;
+ add_3D_tensor_argument(idx, _input1, slice_input1);
+ add_3D_tensor_argument(idx, _input2, slice_input2);
+ add_3D_tensor_argument(idx, _output, slice);
+ enqueue(queue, *this, slice);
+
+ collapsed.slide_window_slice_3D(slice_input1);
+ collapsed.slide_window_slice_3D(slice_input2);
+ } while (collapsed.slide_window_slice_3D(slice));
+}
+
+BorderSize CLPixelWiseDivisionKernel::border_size() const
+{
+ const unsigned int replicateSize =
+ _output->info()->dimension(0) -
+ std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
+ const unsigned int border =
+ std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
+ return BorderSize(0, border, 0, 0);
+}