summaryrefslogtreecommitdiff
path: root/compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp')
-rw-r--r--compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp503
1 files changed, 503 insertions, 0 deletions
diff --git a/compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp b/compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp
new file mode 100644
index 000000000..11794a1ea
--- /dev/null
+++ b/compute/ARMComputeEx/src/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.cpp
@@ -0,0 +1,503 @@
+/*
+ * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
+ * Copyright (c) 2017-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCoreEx.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
+#include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
+#include "arm_compute/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "arm_compute/runtime/TensorAllocator.h"
+#include "support/ToolchainSupport.h"
+
+using namespace arm_compute;
+using namespace arm_compute::misc::shape_calculator;
+
+NEGEMMLowpMatrixMultiplyCoreEx::NEGEMMLowpMatrixMultiplyCoreEx(
+ std::shared_ptr<IMemoryManager> memory_manager)
+ : _memory_group(memory_manager), _asm_glue(memory_manager), _mm_kernel(nullptr),
+ _mtx_a_reshape_kernel(nullptr), _mtx_b_reshape_kernel(nullptr), _mtx_a_reduction_kernel(),
+ _mtx_b_reduction_kernel(), _offset_contribution_kernel(),
+ _offset_contribution_output_stage_kernel(), _vector_sum_col(), _vector_sum_row(), _tmp_a(),
+ _tmp_b(), _mm_result_s32(), _signed_a(), _signed_output(), _original_b(nullptr), _a_offset(0),
+ _b_offset(0), _run_vector_matrix_multiplication(false), _assembly_path(false),
+ _fused_assembly_path(false), _reshape_b_only_on_first_run(false), _is_prepared(false),
+ _fuse_output_stage(false), _run_activation(false), _flip_signedness(false)
+{
+}
+
+void NEGEMMLowpMatrixMultiplyCoreEx::configure(const ITensor *a, const ITensor *b, const ITensor *c,
+ ITensor *output, const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
+ ARM_COMPUTE_UNUSED(c);
+ ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCoreEx::validate(
+ a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
+
+ const ITensor *matrix_a = a;
+ const ITensor *matrix_b = b;
+ GEMMInfo info = gemm_info;
+
+ // Clear state
+ _mtx_a_reshape_kernel = nullptr;
+ _mtx_b_reshape_kernel = nullptr;
+
+ // Set internal variables
+ _a_offset = a->info()->quantization_info().offset;
+ _b_offset = b->info()->quantization_info().offset;
+ _run_vector_matrix_multiplication = a->info()->dimension(1) < 2;
+ _reshape_b_only_on_first_run = info.reshape_b_only_on_first_run();
+ _is_prepared = false;
+ _fused_assembly_path = false;
+ _original_b = b;
+
+ const ITensor *a_to_use = a;
+
+ // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
+ if (info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
+ {
+ _fuse_output_stage = true;
+ _memory_group.manage(&_mm_result_s32);
+ TensorInfo info_mm_result_s32(output->info()->tensor_shape(), 1, DataType::S32);
+ _mm_result_s32.allocator()->init(info_mm_result_s32);
+ }
+
+#ifdef __aarch64__
+#if 0 // Can use after arm compute library v19.11
+ switch (a->info()->data_type())
+ {
+ case DataType::QASYMM8:
+ case DataType::QASYMM8_SIGNED:
+ case DataType::U8:
+ case DataType::S8:
+ {
+ if (a_to_use->info()->data_type() == DataType::QASYMM8 &&
+ info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
+ {
+ _asm_glue.configure(a_to_use, b, c, output, gemm_info);
+ _fused_assembly_path = _asm_glue.is_configured();
+ }
+ else
+ {
+ _asm_glue.configure(a_to_use, b, nullptr, _fuse_output_stage ? &_mm_result_s32 : output,
+ gemm_info);
+ }
+ _assembly_path = _asm_glue.is_configured();
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Datatype not supported");
+ break;
+ }
+ }
+#endif // 0
+ ARM_COMPUTE_ERROR("aarch64 not supported");
+#endif /* __aarch64__ */
+ if (!(_assembly_path || _run_vector_matrix_multiplication))
+ {
+ matrix_a = &_tmp_a;
+ matrix_b = &_tmp_b;
+
+ // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width /
+ // 4.0f) ]
+ TensorInfo a_info(compute_interleaved_shape(*a_to_use->info()), 1,
+ a_to_use->info()->data_type(), a_to_use->info()->quantization_info());
+ // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width /
+ // 16.0f) ]
+ TensorInfo b_info(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type(),
+ b->info()->quantization_info());
+ _tmp_a.allocator()->init(a_info);
+ _tmp_b.allocator()->init(b_info);
+ _memory_group.manage(&_tmp_a);
+ if (!_reshape_b_only_on_first_run)
+ {
+ _memory_group.manage(&_tmp_b);
+ }
+
+ // Configure interleave kernel
+ {
+ auto k = arm_compute::support::cpp14::make_unique<NEGEMMInterleave4x4Kernel>();
+ k->configure(a_to_use, &_tmp_a);
+ _mtx_a_reshape_kernel = std::move(k);
+ }
+
+ // Configure transpose kernel
+ {
+ auto k = arm_compute::support::cpp14::make_unique<NEGEMMTranspose1xWKernel>();
+ k->configure(b, &_tmp_b);
+ _mtx_b_reshape_kernel = std::move(k);
+ }
+ }
+
+ if (!_fused_assembly_path)
+ {
+ // Initialize matrix B reduction kernel only if _a_offset is not equal to 0
+ if (_a_offset != 0)
+ {
+ TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
+
+ _vector_sum_col.allocator()->init(info_vector_sum_col);
+ if (!_reshape_b_only_on_first_run)
+ {
+ _memory_group.manage(&_vector_sum_col);
+ }
+
+ // Configure Matrix B reduction kernel
+ _mtx_b_reduction_kernel.configure(b, &_vector_sum_col, a_to_use->info()->dimension(0), false);
+ }
+
+ // Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
+ if (_b_offset != 0)
+ {
+ TensorInfo info_vector_sum_row(compute_reductionB_shape(*a_to_use->info()), 1, DataType::S32);
+
+ _vector_sum_row.allocator()->init(info_vector_sum_row);
+ _memory_group.manage(&_vector_sum_row);
+
+ // Configure matrix A reduction kernel
+ _mtx_a_reduction_kernel.configure(a_to_use, &_vector_sum_row, a_to_use->info()->dimension(0),
+ false);
+ }
+
+ if (_fuse_output_stage)
+ {
+ // Configure matrix multiply kernel
+ if (!_assembly_path)
+ {
+ auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
+ k->configure(matrix_a, matrix_b, &_mm_result_s32);
+ _mm_kernel = std::move(k);
+ }
+
+ _offset_contribution_output_stage_kernel.configure(
+ &_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col,
+ _b_offset == 0 ? nullptr : &_vector_sum_row, c,
+ _flip_signedness ? &_signed_output : output, a->info()->dimension(0), _a_offset,
+ _b_offset, info.gemmlowp_output_stage());
+ }
+ else
+ {
+ // Configure matrix multiply kernel
+ if (!_assembly_path)
+ {
+ auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
+ k->configure(matrix_a, matrix_b, output);
+ _mm_kernel = std::move(k);
+ }
+ // Configure offset contribution kernel
+ _offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col,
+ _b_offset == 0 ? nullptr : &_vector_sum_row,
+ a_to_use->info()->dimension(0), _a_offset, _b_offset);
+ }
+ }
+
+ // Allocate tensors
+ if (!_assembly_path && !_run_vector_matrix_multiplication)
+ {
+ _tmp_a.allocator()->allocate();
+ if (!_reshape_b_only_on_first_run)
+ {
+ _tmp_b.allocator()->allocate();
+ }
+ }
+
+ if (!_fused_assembly_path)
+ {
+ if (_a_offset != 0 && !_reshape_b_only_on_first_run)
+ {
+ _vector_sum_col.allocator()->allocate();
+ }
+
+ if (_b_offset != 0)
+ {
+ _vector_sum_row.allocator()->allocate();
+ }
+ }
+
+ if (_fuse_output_stage)
+ {
+ _mm_result_s32.allocator()->allocate();
+ }
+}
+
+Status NEGEMMLowpMatrixMultiplyCoreEx::validate(const ITensorInfo *a, const ITensorInfo *b,
+ const ITensorInfo *c, const ITensorInfo *output,
+ const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::S8);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::S8);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ c != nullptr && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE,
+ "Bias addition not supported in NEGEMMLowpMatrixMultiplyCoreEx for output S32");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
+ "The product AB is defined only if the number of columns in A is "
+ "equal to the number of rows in B");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(),
+ "Matrix A already reshaped is not supported");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(),
+ "Matrix B already reshaped is not supported");
+
+ GEMMInfo info = gemm_info;
+ const ITensorInfo *matrix_a_info = a;
+ const ITensorInfo *matrix_b_info = b;
+
+ const ITensorInfo *a_to_use = a;
+
+ TensorInfo tmp_a_info{};
+ TensorInfo tmp_b_info{};
+ TensorInfo mm_result_s32_info{};
+
+ int32_t a_offset = a->quantization_info().offset;
+ int32_t b_offset = b->quantization_info().offset;
+
+ bool fuse_output_stage = info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE;
+ if (fuse_output_stage)
+ {
+ auto_init_if_empty(
+ mm_result_s32_info,
+ a->clone()->set_tensor_shape(output->tensor_shape()).set_data_type(DataType::S32));
+ }
+
+ // Check if we need to run the optimized assembly kernel
+ bool run_optimised = false;
+ bool run_optimised_requantized = false;
+ const bool reshape_b_only_on_first_run = info.reshape_b_only_on_first_run();
+ if (a_to_use->data_type() == DataType::QASYMM8 &&
+ info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
+ {
+ run_optimised = bool(NEGEMMAssemblyDispatch::validate(a_to_use, b, output, 1.f, 0.f,
+ reshape_b_only_on_first_run));
+ run_optimised_requantized = run_optimised;
+ }
+ else
+ {
+ run_optimised = bool(NEGEMMAssemblyDispatch::validate(
+ a_to_use, b, fuse_output_stage ? &mm_result_s32_info : output, 1.f, 0.f,
+ reshape_b_only_on_first_run));
+ }
+
+ if (run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
+ if (info.depth_output_gemm3d() != 0)
+ {
+ if (info.reinterpret_input_as_3d())
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(),
+ "NEGEMM cannot reinterpret the input tensor as 3D");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0,
+ "NEGEMM cannot reinterpret the output tensor as 3D");
+
+ const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
+ if (!run_vector_matrix_multiplication)
+ {
+ matrix_a_info = &tmp_a_info;
+ matrix_b_info = &tmp_b_info;
+
+ // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width /
+ // 4.0f) ]
+ TensorShape shape_tmp_a = a->tensor_shape();
+ shape_tmp_a.set(0, a->dimension(0) * 4);
+ shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f));
+
+ // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width
+ // / 16.0f) ]
+ TensorShape shape_tmp_b = b->tensor_shape();
+ shape_tmp_b.set(0, b->dimension(1) * 16);
+ shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f));
+
+ // Validate interleave kernel
+ auto_init_if_empty(tmp_a_info, a_to_use->clone()->set_tensor_shape(shape_tmp_a));
+ auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(shape_tmp_b));
+
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a_to_use, &tmp_a_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &tmp_b_info));
+ }
+ }
+
+ if (!run_optimised_requantized)
+ {
+ TensorInfo info_vector_sum_col{};
+ TensorInfo info_vector_sum_row{};
+
+ // Validate matrix B reduction kernel only if _a_offset is not equal to 0
+ if (a_offset != 0)
+ {
+ info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
+
+ // Configure Matrix B reduction kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixBReductionKernel::validate(
+ b, &info_vector_sum_col, a->dimension(0), false));
+ }
+
+ // Validate Matrix A reduction kernel only if _b_offset is not equal to 0
+ if (b_offset != 0)
+ {
+ info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
+
+ // Configure matrix A reduction kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(
+ a_to_use, &info_vector_sum_row, a->dimension(0), false));
+ }
+
+ if (fuse_output_stage)
+ {
+ if (!run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(
+ matrix_a_info, matrix_b_info, &mm_result_s32_info));
+ }
+
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionOutputStageKernel::validate(
+ &mm_result_s32_info, a_offset == 0 ? nullptr : &info_vector_sum_col,
+ b_offset == 0 ? nullptr : &info_vector_sum_row, c, output, a_offset, b_offset,
+ info.gemmlowp_output_stage()));
+ }
+ else
+ {
+ if (!run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ NEGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output));
+ }
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionKernel::validate(
+ output, a_offset == 0 ? nullptr : &info_vector_sum_col,
+ b_offset == 0 ? nullptr : &info_vector_sum_row, a_offset, b_offset));
+ }
+ }
+ return Status{};
+}
+
+void NEGEMMLowpMatrixMultiplyCoreEx::run()
+{
+ prepare();
+
+ MemoryGroupResourceScope scope_mg(_memory_group);
+
+ // Reshape inputs
+ if (_mtx_a_reshape_kernel)
+ {
+ NEScheduler::get().schedule(_mtx_a_reshape_kernel.get(), Window::DimY);
+ }
+ if (_mtx_b_reshape_kernel && !_reshape_b_only_on_first_run)
+ {
+ NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
+ }
+
+ // Run GEMM
+ if (_asm_glue.is_configured())
+ {
+ _asm_glue.run();
+ }
+ else
+ {
+ NEScheduler::get().schedule(_mm_kernel.get(), Window::DimY);
+ }
+
+ if (!_fused_assembly_path)
+ {
+ // Run matrix A reduction kernel only if _b_offset is not equal to 0
+ if (_b_offset != 0)
+ {
+ NEScheduler::get().schedule(&_mtx_a_reduction_kernel, Window::DimX);
+ }
+
+ // Run matrix B reduction kernel only if _a_offset is not equal to 0
+ if (_a_offset != 0 && !_reshape_b_only_on_first_run)
+ {
+ NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX);
+ }
+
+ if (_fuse_output_stage)
+ {
+ // Run offset contribution kernel
+ NEScheduler::get().schedule(&_offset_contribution_output_stage_kernel, Window::DimY);
+ }
+ else
+ {
+ // Run offset contribution kernel
+ NEScheduler::get().schedule(&_offset_contribution_kernel, Window::DimY);
+ }
+ }
+}
+
+void NEGEMMLowpMatrixMultiplyCoreEx::prepare()
+{
+ if (!_is_prepared)
+ {
+ // Run assembly reshape
+ if (_asm_glue.is_configured() && _reshape_b_only_on_first_run)
+ {
+ ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
+
+ _asm_glue.prepare();
+ _original_b->mark_as_unused();
+ }
+ // Run non-assembly reshape
+ else if (_mtx_b_reshape_kernel && _reshape_b_only_on_first_run)
+ {
+ ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
+
+ // Run reshape kernel and mark original weights tensor as unused
+ _tmp_b.allocator()->allocate();
+ NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
+ _original_b->mark_as_unused();
+ }
+
+ // Run matrix B reduction kernel only if _a_offset is not equal to 0
+ if (_a_offset != 0 && _reshape_b_only_on_first_run)
+ {
+ _vector_sum_col.allocator()->allocate();
+ NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX);
+ }
+
+ _is_prepared = true;
+ }
+}